|JA-64 Architecture
Innovations

Abbreviated Version of 2/23/99 |A-64
Architecture Disclosure

(bp HEWLETT

PACKARD

Agenda

Review content disclosed at IDF
¢Focus on benefits

¢ Focus on “What's New?”
Branch Handling: Predication and Prediction
Speculation

Register Rotation & Loop Handling

(bp HEWLETT

PACKARD

So What's New?

Static prediction
¢ Improves prediction of always or never taken branches

Parallel compares

¢ Increased parallelism through logical combination of compares

Hoisting uses

¢ Increased scheduling flexibility improves performance

Data Speculation
¢ Moves loads above stores, increasing scheduling flexibility and performance

Nat bits

¢ Enables deferral of exceptions, supports more aggressive speculation

Multiway branch
¢ Executes multiple branches in a single cycle

Register rotation

¢ Enables wider use of software pipelining performance benefits

e Predicate rotation

intal

¢ More efficient implementation of software pipelining

(bp HEWLETT

PACKARD

Traditional Architectures:
Limited Parallelism

Original Source . Seq uentlal Machlne
Code Compiler Hardware

— DEFEHIENZEE parallelized | &
— -ode code I
e -
peLtliiole
URCHEREINRS
[|

Execution Units Avallable-
Used Inefficiently

Today’s Processors are often 60% ldle

Intel K28 Eackarc

JA-64 Architecture:
Explicit Parallelism

Original Source Parallel Machine
Code Code

e Cornolle —>§ g ? ?
I

Compiler Hardware

—ultiglefugetiopal tplis
W
IA-64 Compiler

Views Wider
Scope

execution resources

Increases Parallel Execution

Intel K%2) Eackanc

Branch Handling

Traditional Arch

EVpleiplle Preefje

Statlc Pregiiction
ONrePEIRIENCHINIESIS

e Branches are breaks in code
e Can indicate a decision

— —/

& Others

intel « Common in wide variety of applications (/7] HovET

PACKARD

Review

Dynamic Branch
Prediction

P AnS

Traditional Architectures

e Guess either B or C

» Suffer performance penalty when mispredicted

* 5-10% mispredict rate can cost 40+% performance

(bﬁ HEWLETT

PACKARD

Static Branch Prediction

Compiler: “Its
going to be B”

B

« Compiler knows which one is almost always
taken or never taken
« Removes guesswork for processor, reduces
mispredict penalties
e Concentrates hardware resources on other
intgl difficult to predict branches [/7) HEvLETT

PACKARD

Review

Predication

* Removes Branch, executes B&C in parallel

* Avoids possibility of mispredict

* Predicates (pl & p2) are bits that turn on/off B & C

* Biggest benefit to code w/ hard to predict branches
e arge server apps

intel sData sorting [/ HEviETT

PACKARD

Parallel Compares:
Extends Predication

 Reduces critical path, further increasing performance
 Enables reduction from 7 to 4 cycles on queens loop

intal Unique feature to IA-64 [/7) HEwLeTT

PACKARD

Predication Benefits

e Reduces branches and mispredict penalties
¢ 50% fewer branches and 37% faster code*
e Parallel compares further reduce critical paths
e Greatly improves code with hard to predict
branches
¢ Large server apps- capacity limited

¢ Sorting, data mining- large database apps
¢ Data compression

e Traditional architectures

bolt-on” approach can’t
efficiently approximate predication

¢ Cmove: 39% more instructions, 30% lower performance*
¢ Instructions must all be speculative

"Ttd * Sourc!@'}/lg‘gévggéés

Review

Speculation Review

Traditional Architectures |A-64

: Id.s
Instr 1 :

: Instr 1
!r]s_tr 2 Instr 2
br br

i Load ‘chk.s -’/
Luse Luse

Memory latency Elevates load, reduces
stalls CPU memory latency impact

Speculation overcomes the memory latency
bottleneck in today’s & tomorrow’s systems

Intel K%2) Eackanc

Hoisting Uses

|A-64
|d.s
Instr 1
INStr 2

o]§

A 4
oS
use

e The uses of speculative data can also be
executed speculatively

e Provides additional scheduling flexibility to
_ achieve greater parallelism
Intel KiAd cackaro

01/04/99

Introducing Data Speculation
e Compiler can issue a load prior to a

preceding, possibly-conflicting store

Traditional Architectures |A-64

Instr 1
Instr 2

Instr 2
St8 St8

1d8 } Id.c

use use

Memory latency Elevates load above
stalls CPU “store barrier”

intal Unique feature to IA-64 [/7) HEwLeTT

PACKARD

Exception Handling

Traditional Traditional
Method 1 Method 2

instr 1 instr 1
instr 2 instr 2

|A-64

instr 1
instr 2 \

b b br

NaT Bit

A

use
Home Block

use

Only in limited Extra baggage Widely applicable,
Instances to ensure integrity NaT bit ensures
& can’t hoist uses Integrity of data
(e.g. non-faulting load) without penalty
Intel LA packann

01/04/99

Speculation Benefits

e Reduces impact of memory latency

¢Performance improvement at 79% when
combined with predication*

e Greatest Improvement to code with

many cache accesses
¢l arge databases
¢Operating systems

e Scheduling flexibility enables new
levels of performance headroom

I HEWLETT
In'tel * August et.al., 1998 2 ackaro

Loop Handling

“Do loop 4 times”

|A-64 has special register to accelerate loops &
avoid mispredicts : called Loop Counter (LC)

Improves integer code performance
Intel LA packann

B Multi-way Branch

w/o Speculation Hoisting Loads |A-64

|d8.sr6 = (ra)
1d8 16 = (ra) |08.517 = (rb)

(pd)_br exitl id8.s 18 = (ic) [48.5 48 = (fc)

%/l P2 chk-r6;reco ! ! !
(/}ﬂ%fr—exﬂ—l—
|d8 r7 = (rb) chk r6, recO

(1p3) br exit2 (p2) chk r7, recl

|d8.sr6 = (ra)
|d8.sr7 = (rb)

4 Chk r7, recl (p4) chk r8, rec2
= P4 4/@3%”%-\-2— H
/P (p1) br exitl
(p3) br exit2

|d8 r8 = (rc) ;
(p5) br exit3

(p3) br exit3 Chk 8, rec2
m P6 (/wj N /%l
3 branch cycles 1 branch cycle

eMultiway branches: more than 1 branch in a single cycle
+Chaining multiway branches allows n-way branching

Intel K%2) Eackanc

01/04/99

Software Pipelining

e Overlapping execution of different loop iterations

e More iterations In same amount of time

|A-64 Offers an Innovative Approach
Intel LA packann

Software Pipelining

e |A-64 features that make this possible
¢ Full Predication
¢ Special branch handling features
¢ Register rotation: removes loop copy overhead
¢ Predicate rotation: removes prologue & epilogue

e Traditional architectures use loop unrolling

¢ High overhead: extra code for loop body, prologue, and
epilogue

Especially Useful for Integer Code With Small
Number of Loop lterations

(bp HEWLETT

PACKARD

! New!
Introducing Rotating Registers

Traditional
Arch |A-064

load in R36 — load iIn R36 —]
load in R37 —
load in R38 —
load in R39 —

4 instructions 1 instruction

Improves performance without code expansion
I tel HEWLETT
In (D) P

Software Pipelining Benefits

e Loop pipelining maximizes performance,;
minimizes overhead

¢Avoids code expansion of unrolling and code
explosion of prologue and epilogue

¢®Smaller code means fewer cache misses

¢Greater performance improvements in higher
latency conditions

e Reduced overhead allows S/W pipelining of
small loops with unknown trip counts

¢ Typical of integer scalar codes

(bp HEWLETT

PACKARD

Reviewing What's New:

e Parallel compares

e Thit

e Nat bits

Deferral

Hoisting uses
Propagation

e Branch instructions
e Static prediction

e Loop branches
e LC register

e EC register

e Multiway branch
e Branch registers

Register rotation
Predicate rotation

RRBs

(bp HEWLETT

PACKARD

Feature Comparison

Traditional
Architectures

|A-64

Dynamic branch prediction

Branch specific Static Prediction and
Predication enhance dynamic prediction
to reduce mispredict penalties

Conditional moves limited
in applicability and require
additional instructions

Predication widely applicable, parallel
compares further enhance benefit

Non faulting loads limited
to certain conditions or
require additional
Instructions

Control and data speculation enable
greater scheduling freedom of loads

Software pipelining limited
to large loops due to code
size explosion

Rotating registers and rotating
predicates allow wide application of
software pipelining performance
benefits without the code growth

HEWLETT
PACKARD

(D

Summary

e Predication removes branches
¢Eliminates branches & mispredicts, increases ILP
¢Good for large database applications

e Speculation reduces memory latency
¢Enhances ILP and scalability

¢Good for variety of server applications
» (databases, OLTP, etc.)

e S/W pipelining support enables broad usage

¢Performance for small integer loops with unknown
trip counts as well as monster FP loops

(bp HEWLETT

PACKARD

