

Process and Predictability

in an

Age of Reuse

OOPSLA ’95 Workshop

on

Object-Oriented Process and Metrics

for Effort Estimation

Brian Foote

15 October 1995

Sunday

foote@cs.uiuc.edu

http://www.cpl.uiuc.edu/~bfoote

�
The Impact of Reuse on

Process and Predictability

Reuse Changes Everything

What you do

Where you start from

Reusable objects

are the result of an

iterative evolutionary process

that unfolds within and beyond applications

The best process

is not necessarily the

most predictable process

�
What Can be (Re)used?

Applications

Libraries

Abstract Classes

Components

Frameworks

Builders/Tools

Designs

Patterns

Experience

Architecture

�

The Fractal Model

of the Lifecycle of Reusable Objects

Reusable objects are the

result of a highly iterative process

Reusable object-oriented abstract classes, components

and frameworks have distinct lifecyles of their own

Objects evolve within and beyond the applications

that spawned them

Structure emerges as objects evolve

Because the pattern in which they evolve is similar

at each level, the overall pattern can be thought

of as a fractal curve

�

The Lifecycle of an Object-Oriented Entity

The Fractal Model distinguishes three stages, or phases

Initial Design (Prototype) Phase

Exploratory (Expansionary) Phase

Design Consolidation (Generalization) Phase

�

Initial Design (Prototype) Phase

Usually a prototype (of sorts)

Informally structured

Employs expedient "code borrowing"

Constitutes a first pass at design

General design opportunities should be anticipated, where possible

Expedient design should never be mistaken for good design

�

Exploratory (Expansionary) Phase

Occurs when a design is successful

Frequently occurs during the "perfective" maintenance phase

Characterized by the spawning of a number of specialized

variations on the original theme

Broad, shallow class hierarchies may develop

There is a risk of "mid-life" generality loss

These may be somewhat informally organized

A "white-box" phase

�

Design Consolidation (Generalization) Phase

Where entropy reduction gets done

Class hierarchy is reorganized and refactored

Abstract classes that reflect

structural regularities in the system emerge

Hierarchy comes to reflect the way you'd like to tell people

you got it there

Refactoring at this point in a system's evolution allows the

designer to exploit the insights available from having

specialized a design to suit a number of applications

Hindsight, which is now available,

can be brought to bear on the redesign

A "black-box" phase

�

These phases unfold independently

at all levels of the system

At each level, objects move from the prototyping phase,

through the exploratory phase, and then into consolidation

Components, Abstract Classes, and Frameworks

all evolve in this fashion

Components emerge as framworks evovle

Components are suited to builders

Both exploration and consolidation

should be undertaken in an

"opportunistic" fashion

as opposed to the "risk-based" criterion of the Spiral Model

�

A Fractal Method

Framework Cultivation

Framework Farming

Selective Breeding

Framework Eugenics

The idea: Exploit the evolutionary characteristic of

object oriented frameworks by "seeding" the framework

with a broad range of representative requirements drawn from

the domain of interest

Building frameworks for unfamiliar domains

is hard to do up-front

Building a domain-specific framework is a good way

to explore a domain's design space

One program is easier to maintain than five.

�
Implications of this Lifecycle Perspective

Design pervades the lifecycle

Emphasis is not so much on single applications

as on developing the

software infrastructure for solving a

range of application requirements

If hindsight is so valuable, the perhaps current programmer

deployment practices are backwards

Skilled designers may be most valuable during the

design consolidation phase

Perhaps this perspective can lead to a

gentrification of maintenance

Greater reuse potential can make lavishing greater care,

resources, and attention on components pay

�
Triage and the Tyranny

of the Timetable

Why are Programmer's Estimates so Bad?

Parkinson's Law

Unexpected Complexity

Future is the Hardest Thing to Predict

Macho Programmer Syndrome

Labor Pain Principle

Mushy Completion Criteria

Montgomery Scott Gambit

hours, days, weeks, months…

�
What Can We Predict?

Intercranial Communication Penalty: 5 x

Effort devoted to Refactoring: 25%

Framework Leverage: 80%-95%

Virtuoso Penalty: 1.0-2.5 x

Experience Multiplier: 1.0-10.0-? X

White-box framework learning time:

proportional to volume

Black-box framework learning time:

proportional to surface area

�

To Win Big

(Re)use Component-based Frameworks

Build Domain-Specific Frameworks

Quality Talent

Deploy Along the Grain

Employ Fractal Process/Method

Leave the Predicting to Jean Dixon

* �page�14� *

