GenericFunctions and Friends – Brian Foote

2Object subclass: #MethodCombinationContext

CompiledMethod variableSubclass: #EffectiveMethod
3
Object subclass: #MethodCombination
3
MethodCombination subclass: #SubStandardMethodCombination
3
MethodCombination subclass: #SimpleMethodCombination
5
CompiledMethod variableSubclass: #MultiMethod
6
MethodWrapper variableSubclass: #DiscriminatingMethod
11
Object subclass: #Specializer
15
Specializer subclass: #EqualSpecializer
15
Specializer subclass: #ClassSpecializer
17
Object subclass: #GenericFunction
20
Medium subclass: #Land
25
Object subclass: #Animal
25
Animal subclass: #Mammal
26
Mammal subclass: #Mouse
27


Object subclass: #MethodCombinationContext


instanceVariableNames: 'methodCombination genericFunction applicableMethods arguments '



classVariableNames: ''



poolDictionaries: ''



category: 'Generic-Functions'!

MethodCombinationContext comment:
'MethodCombinationContext objects house the per-call dynamic state for GenericFunction invocations.  They are created by MethodCombination objects when a GenericFunction is applied so that additional context information can be recovered when Context>>callNextMethod or Context>>callNextMethodWithArguments: is called.

Instance Variables:

methodCombination
<MethodCombination> The MethodCombination that created this 

MethodCombinationContext.


genericFunction 
<GenericFunction> The GenericFunction that called the 

MethodCombination that created us.



applicableMethods
<OrderedCollection of: MultiMethod> The applicable MultiMethods 

that are still to be called.


arguments

<Array of: Obect> The arguments with which the next 

MultiMethod should be called.


'!


!MethodCombinationContext methodsFor: 'instance initialization'!

methodCombination: mc genericFunction: gf applicableMethods: am arguments: args 



"Stash the MethodCombination we were created for, the GenericFunction that summoned it, the 


applicable MultiMethods that will be grist for this mill, and the 

arguments the GenericFunction was 



called with."



methodCombination := mc.



genericFunction := gf.



applicableMethods := am.



arguments := args.


^self! !

!MethodCombinationContext methodsFor: 'evaluation'!
applyNextWithArguments: args 


"Apply the next applicable method. If we were passed an 

argument list, use those instead of the ones 



we were created with. This will happen when callNextMethodWithArguments: is 

called instead of 


callNextMethod. Then, pick the next method off of the list 

of applicable methods, and prune it 



off the list. Finally, call the method, and return its result as 

our result. If there is no next applicable 


method, declare defeat."


| method result |


args isNil ifFalse: [arguments := args].


applicableMethods isEmpty ifTrue: [self error: 'no applicable methods'].


method := applicableMethods first.


applicableMethods := applicableMethods rest.


result := method valueWithReceiver: arguments first arguments: arguments rest asArray.


Transcript show: ' -- applying ' , method printString , ' in MethodCombinationContext'; cr.


^result! !

CompiledMethod variableSubclass: #EffectiveMethod

instanceVariableNames: ''


classVariableNames: ''


poolDictionaries: ''


category: 'Generic-Functions'!

EffectiveMethod comment:

'EffectiveMethods are not currently in use...'!

Object subclass: #MethodCombination

instanceVariableNames: ''


classVariableNames: ''


poolDictionaries: ''


category: 'Generic-Functions'!

MethodCombination comment:

'MethodCombination objects take a collection of applicable methods and arguments, and run them in the manner prescribed by the qualifers and argument types.  In CLOS, MethodCombinations, in collusion with discriminating functions and the multimethods themselves, are used to produce optimized ''effective methods''.  Here, they often conduct the execution of the GenericFunction directly.  MethodCombination is an abstract class.'!

!MethodCombination methodsFor: 'evaluation'!

applyGenericFunction: gf withMethods: am andArguments: args 


^self subclassResponsibility! !


MethodCombination subclass: #SubStandardMethodCombination


instanceVariableNames: ''


classVariableNames: ''


poolDictionaries: ''


category: 'Generic-Functions'!


SubStandardMethodCombination comment:


'SubStandardMethodCombination objects provide rudimentary support for Before, After, and Primary methods, with support for callNextMethod.  They use MethodCombinationContext objects to provide primary/callNextMethod support.  That hierarchy should be factored to parallel this one.'!

!SubStandardMethodCombination methodsFor: 'evaluation'!

applyGenericFunction: gf withMethods: am andArguments: args 


"This is the meat of SubStandardMethodCombination. First, select all 

the #Before methods from the 



sorted applicable methods list, and exectue them in most-specifc to 

least-specific (most general) 



order. This is the way they come out of GenericFunction's sort. Next, create a 


MethodCombinationContext object that will house the context information for primary method 


execution, and ask it to start the first one up. If a next method is called, 

the stack is walked by callNextMethodXxx in order to locate this object, and it conducts 

the next invocation. Once we have a result from the primary chain, select and execute 

all the #After methods in least-specifc to 



most-specific order. Since they are in the sorted list 

in the most to least order, we reverse it first. 


Any results from #Before and #After methods are discarded, 

and the result from the primary chain 



is returned as the result of this GenericFunction invocation."



| primaries v before mcc after |


before := am select: [:method | method qualifier == #Before].


before do: [:m | v := m valueWithReceiver: args first arguments: args rest asArray].


primaries := am select: [:method | method qualifier isNil].


mcc := MethodCombinationContext new





methodCombination: self





genericFunction: gf





applicableMethods: primaries





arguments: args.


v := mcc applyNextWithArguments: nil.


after := am select: [:method | method qualifier == #After].


after reverse do: [:m | v := m valueWithReceiver: args first arguments: args rest asArray].


Transcript show: ' -- applying GenericFunction in MethodCombination'; cr.


^v!

callNextMethod


"If you needs an example of a method where transformations that 

would normally be considered as 



behavior preserving might not be, consider 

#applyGenericFunction:withMethods:andArguments: in 



the presence of this method..."



| applyContext gf args primaries |



applyContext := self firstContextWithSelector:

#applyGenericFunction:withMethods:andArguments:.


gf := applyContext tempAt: 1.


args := applyContext tempAt: 3.



primaries := applyContext tempAt: 4.


primaries size <= 1 ifTrue: [^nil].


self



applyGenericFunction: gf



withMethods: primaries rest



andArguments: args!

callNextMethodWithArguments: arguments 


| applyContext gf args primaries |


applyContext := thisContext firstContextWithSelector: #applyGenericFunction:withMethods:andArguments:.


gf := applyContext tempAt: 1.


arguments isNil



ifTrue: [applyContext tempAt: 3]



ifFalse: [args := arguments].


primaries := applyContext tempAt: 4.


primaries size <= 1 ifTrue: [^nil].


self



applyGenericFunction: gf



withMethods: primaries rest



andArguments: args! !

MethodCombination subclass: #SimpleMethodCombination

instanceVariableNames: ''


classVariableNames: ''


poolDictionaries: ''


category: 'Generic-Functions'!

SimpleMethodCombination comment:

'SimpleMethodCombination objects specialize MethodCombination to provide a trivial scheme for MultiMethod selection and exection: just execute ''em all in the order in which they come up.  It does not currently support callNextMethod (though defaults should be factored into MethodCombination for this soon).'!

!SimpleMethodCombination methodsFor: 'evaluation'!

applyGenericFunction: gf withMethods: am andArguments: args 


"An odd test of the method combination mechanism, that executes 


all the applicable methods, and returns the value of the last one..."


| v |


am do: [:m | v := m  valueWithReceiver: args first arguments: (args rest) asArray].


Transcript show: 'applying gf in mc'; cr.


^v! !

CompiledMethod variableSubclass: #MultiMethod

instanceVariableNames: 'specializers genericFunctionSelector multiMethodSelector qualifier '


classVariableNames: ''


poolDictionaries: ''


category: 'Generic-Functions'!

MultiMethod comment:

'MultiMethod objects are like regular methods, except that any and all of their arguments can participate in their selection, and they can be qualified as being of particular types like #Before or #After, that are treated differently from normal #Primary methods.

The are currently defined by using a special type syntax in the browser.  For instance,

moveThrough: medium <Land> 

...

in class <Mammal> defines a MultiMethod the first argument of which is specialized on (in CLOS parlance) Mammal (as usual) and the second argument of which is specialized on class Land.  The definition of a MultiMethod in a class for which unspecialized method by that name exists automatically creates a stub for that method.  If a method already exists, it is hidden when the DiscriminatingMethod for the class is installed, which occurs when a MultiMethod is accepted.

Our specializer syntax depends on an extendedLanguage flag in the Parser>>initScanner being turned on.

Currently, no effort is made to "promote" existing unspecialized methods to MultiMethods when a GenericFunction on their selector is established.  This would be a useful thing to do, and the policies and mechanisms for this are under investigation.  Also, DiscriminatingMethods are not currently removed when all the MultiMethods on a particular first argument class are removed.  They can be removed ''by hand'', and by using the MethodWrapper uninstall protocol.

Currently, #Before and #After qualifications can be made by including the words Before or After anywhere in a method name.  This is a peculiar, stopgap mechanism that will be removed when a better syntax or mechanism for qualifiers is defined.

Instance Variables:

specializers

<OrderedCollection> The Specializers (currently all ClassSpecializers) 

for this MultiMethod, in left-to-right order (for now).


genericFunctionSelector <Symbol> The name of the GenericFunction we specialize.


multiMethodSelector <Symbol> The bizarre selector used to identify us in 

MethodDictionaries, and in the Browser.


qualifier

<Symbol> One of #Before, #After, or nil (for primary methods)  

#Around will follow shortly.  User-defined qualifiers will be okay.


'!


!MultiMethod methodsFor: 'removing'!
removeFromGenericFunction


"Disentangle us from our GenericFunction. It is in charge of the DisciminatingMethods too."


self genericFunction remove: self! !

!MultiMethod methodsFor: 'testing'!

= anotherMultiMethod 



"Say two MultiMethods are equal if they are on the same selector, 

and all the Specializers are equal..."



^self genericFunctionSelector = anotherMultiMethod genericFunctionSelector and: [self specializers = anotherMultiMethod specializers]!


isMultiMethod


"I most certainly is.  CompiledCode denies this.  Everything else is 

agnostic on the question."



^true!


lessThan: rhs withArguments: args 



"We compare our specializer with the right argument's specializers on at a time, using the 



corresponding argument to arbitrate relative priority (which is (will be?) 

relevant with multiple inheritance). The order method returns an interval or 

collection that allows the order in which the 



arguments are checked to be changed. CLOS GenericFunctions allow user 

control of the argument prececence. We shall too, soon..."



| left right |



left := self specializers.



right := rhs specializers.



self order do: [:i | ((left at: i)





lessThan: (right at: i)





withArgument: (args at: i))





ifTrue: [^true]].


^false!

matches: args 


"Check each of our Specializers against each respective argument. 

If they all match, we match. If 



any does not, we don't either."



self specializers with: args do: [:s :a | (s matches: a)





ifFalse: [^false]].


^true!

order


"Return a stock left to right interval. We'll override this somehow 

to do argument permutations. An 



instance variable with a default could do this now, but one 

must beware of subtle complications 



first..."



^1 to: self specializers size! !

!MultiMethod methodsFor: 'instance initialization'!
on: gfSelector using: mmSelector withArgumentSpecializers: argumentSpecializers 


"The other version is the one at the bottom. We just add a Specializer 

for our left-hand argument, and 


pass the buck..."


^self



on: gfSelector



using: mmSelector



withSpecializers: (Array with: (ClassSpecializer on: mclass name))





, argumentSpecializers!

on: gfSelector using: mmSelector withSpecializers: anArray 


"Initialize this Multimethod, and add it to its GenericFunction..."


self specializers: anArray copy.



self  genericFunctionSelector: gfSelector.


self  multiMethodSelector: mmSelector.


self  qualifier: (MultiMethod qualifierFor: mmSelector).



"As with CLOS's ensure-generic-function, we create the GF 


if it one doesn't already exist.  This means users won't normally need


to declare GFs explicitly.  This is good, because, unlike CLOS, we


have no syntactic sugar to make this more palatable..."


(GenericFunction on: genericFunctionSelector) add: self .


"Flush the ENTIRE cache..."


self class flushVMmethodCache! !

!MultiMethod methodsFor: 'accessing'!


genericFunction



"Always go through the registry..."



^GenericFunction on: self genericFunctionSelector!

genericFunctionSelector


^genericFunctionSelector!

genericFunctionSelector: anObject


genericFunctionSelector := anObject!

multiMethodSelector


^multiMethodSelector!

multiMethodSelector: anObject


multiMethodSelector := anObject!

qualifier


^qualifier!

qualifier: aSymbol 


^qualifier := aSymbol!

specializerAt: anIndex 


^specializers at: anIndex!

specializerAt: anIndex put: specializer 


^specializers at: anIndex put: specializer!

specializers


^specializers!

specializers: anArray 


^specializers := anArray! !

!MultiMethod methodsFor: 'discriminating method'!
discriminatingMethod


"Let our GenericFunction keep track of where these are planted..."


^self genericFunction discriminatingMethodFor: self!

install


"If our DiscriminatingMethod is not already installed, ask it to do so now..."


self discriminatingMethod isInstalled ifFalse: [self discriminatingMethod install]! !

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!


MultiMethod class

instanceVariableNames: ''!

!MultiMethod class methodsFor: 'instance creation'!
new


"Don't allow empty constructors for multimethods..."


self shouldNotImplement!

new: anObject


"Don't allow empty constructors for multimethods..."


self shouldNotImplement! !


!MultiMethod class methodsFor: 'qualifiers'!

qualifierFor: aSelector 



"MultiMethod qualifierFor: #dogFood: nil"



"MultiMethod qualifierFor: #AroundDogFood: #Around"



"MultiMethod qualifierFor: #BeforeDogFood: #Before"


"Any occurrence works for the moment.  This is an expedient until 

we get real qualifier syntax..."



#(#Before #After #Around) do: [:q | (aSelector findString: q startingAt: 1)





> 0 ifTrue: [^q]].



^nil!


unqualifiedSelectorFor: aSelector 


"MultiMethod unqualifiedSelectorFor: #BeforeSomething: #something:"


"MultiMethod unqualifiedSelectorFor: #AfterSomething: #something:"


"MultiMethod unqualifiedSelectorFor: #something: #something:"


| q s |


q := MultiMethod qualifierFor: aSelector.


q isNil ifTrue: [^aSelector].


s := aSelector copyFrom: q size + 1 to: aSelector size.


s := s asString.


s isEmpty ifTrue: [self error: 'Bad Selector: ' , aSelector].


s at: 1 put: (s at: 1) asLowercase.


^s asSymbol! !

MethodWrapper variableSubclass: #DiscriminatingMethod

instanceVariableNames: 'genericFunctionSelector receiverSpecializer installedFlag '


classVariableNames: ''


poolDictionaries: ''


category: 'Generic-Functions'!

DiscriminatingMethod comment:

'DiscriminatingMethods are MethodWrappers that intercept the invocations of methods for which GenericFunctions are defined, and pass control to these GenericFunctions.  (Future) subclasses may exploit the partial knowlege of the dispatch outcome that DiscriminatingMethods have, as a result of their placement, and use this narrow and expedite this process.

Instance Variables:

genericFunctionSelector
<Symbol> The selector for the GenericFunction we specialize, (and for the MethodDictionary slot we occupy).

receiverSpecializer

<ClassSpecializer> A specializer for the 

receiver position (not currently in use).


installedFlag


<Boolean> Are we currently installed?


'!


!DiscriminatingMethod methodsFor: 'evaluating'!

valueWithReceiver: object arguments: args 



"When an instance of MethodWrapper is called, this method is 

given control. DiscriminatingMethods 



pass control to their GenericFunctions..."



| v |



v := (GenericFunction on: self genericFunctionSelector)






applyReceiver: object withArguments: args.


^v! !

!DiscriminatingMethod methodsFor: 'accessing'!
genericFunctionSelector


^genericFunctionSelector!

genericFunctionSelector: aSymbol


genericFunctionSelector := aSymbol!

receiverClass


^receiverClass!

receiverClass: anObject


receiverClass := anObject!

receiverSpecializer


^receiverSpecializer!

receiverSpecializer: anObject


receiverSpecializer := anObject! !

!DiscriminatingMethod methodsFor: 'installation'!

install



"Let's not let these nest for now. This is unnecessarily restrictive, 

but keeps things simple for now..."



| targetMethod |



self receiverSpecializer: (ClassSpecializer on: mclass name).



targetMethod := mclass compiledMethodAt: selector.



"Is there a wrapper there? If so, yank it out first..."


(targetMethod isKindOf: MethodWrapper)



ifTrue: 




[Transcript show: 'uninstalling a '; print: targetMethod class; show: ' at '; print: selector; cr; endEntry.




targetMethod uninstall].


"Our parent knows how to handle this..."


super install.



"Show something other than the hidden method in the Browsers..."


sourceCode := (DiscriminatingMethod class compiledMethodAt: #installedDiscriminatingMethodSource) sourcePointer.


installedFlag := true!

uninstall


"Do the real uninstall, and then say we don't know our code either, 

and mark us as uninstalled..."



super uninstall.



sourceCode := (DiscriminatingMethod class compiledMethodAt: #uninstalledDiscriminatingMethodSource) sourcePointer.



installedFlag := false! !


!DiscriminatingMethod methodsFor: 'testing'!
isDiscriminatingMethod


"CompiledCode denies this..."


^true!

isInstalled


"Is this DiscriminatingFunction currently installed in a MethodDictionary, or not?"


^installedFlag! !

!DiscriminatingMethod methodsFor: 'initialize-release'!
class: aClass selector: sel 


"This is a stock MethodWrapper set up method. Before letting MethodWrapper 

finish up, we say we 



aren't installed, and set our sourceCode pointer to a dummy chunk of 

source code so that Browsers 


will have something to look at that indicates 


our status..."


installedFlag := false.


sourceCode := (DiscriminatingMethod class compiledMethodAt: #uninstalledDiscriminatingMethodSource) sourcePointer.


^super class: aClass selector: sel! !

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!


DiscriminatingMethod class


instanceVariableNames: ''!


!DiscriminatingMethod class methodsFor: 'installation'!

on: selector inClass: class 



"Do pretty much what our super does, but don't forget our genericFunction selector..."


"Why selector AND genericFunctionSelector?  History.  I probably don't need both."


| d |


d := super on: selector inClass: class.


d genericFunctionSelector: selector.


^d! !

!DiscriminatingMethod class methodsFor: 'accessing'!
canWrap: aSelector inClass: aClass 


"Test if a method can be wrapped without causing infinite recursion."


| class method |


(aClass includesBehavior: MethodWrapper) ifTrue: [^false].


aClass == BlockClosure ifTrue: 




[(#(#valueAsUnwindBlockFrom: #valueNowOrOnUnwindDo:) includes: aSelector)





ifTrue: [^false]].


^true


"I decided to not be picky about whether there is a method to wrap..."


"class := aClass whichClassIncludesSelector: aSelector.


class isNil ifTrue: [^false].


method := class compiledMethodAt: aSelector ifAbsent: [nil].


^method notNil and: [(self primitives includes: method primitiveNumber) not]"! !

!DiscriminatingMethod class methodsFor: 'source templates'!
installedDiscriminatingMethodSource


"* * * The method you are looking at is an INSTALLED DiscriminatingMethod for the current selector. It's actual 


code is hidden. * * *"


"Don't change and accept this code unless you want a method named #installedDiscriminatingMethodSource..."


"The source pointer for this method is copied to that of each DiscriminatingMethod when it is installed..."


^self!

uninstalledDiscriminatingMethodSource


"* * * You are looking at an UNINSTALLED Discriminating Method * * *"


"Don't change and accept this code unless you want a method named #uninstalledDiscriminatingMethodSource..."


"The source pointer for this method is copied to that of each DiscriminatingMethod when it is created and uninstalled..."


^self! !

!DiscriminatingMethod class methodsFor: 'nothing methods'!
createEmptyMethodFor: selector 


"Create a stub method for the indicated selector. First use 

emptyMethodFor: to create some source, 



and then compile it. We return a method node..."



^(self compilerClass new



compile: (self emptyMethodFor: selector)



in: self



notifying: nil



ifFail: []) generate!

createNothingMethodFor: numArgs 


"Depricated..."


^(self compilerClass new



compile: (self doNothingStringFor: numArgs)



in: self



notifying: nil



ifFail: []) generate!

doNothingStringFor: numArgs 


"(0 to: 3) collect: [:i | DiscriminatingMethod doNothingStringFor: i]"


| nameString methodComment |


methodComment := '"* * * DiscriminatingMethod stub method * * *"'.


nameString := numArgs = 0





ifTrue: ['nothing']





ifFalse: [''].


1 to: numArgs do: [:i | nameString := nameString , 'nothing: t' , i printString , ' '].


^nameString , ' ' , methodComment , '  ^self'!

emptyMethodFor: selector 


"DiscriminatingMethod emptyMethodFor: #to:do:"


| methodComment |


methodComment := '"* * * DiscriminatingMethod stub method... * * *"'.


^(self methodHeaderFor: selector)



, methodComment , '  ^self'!

methodHeaderFor: selector 


"DiscriminatingMethod methodHeaderFor: #size 'size '"


"DiscriminatingMethod methodHeaderFor: #+ '+ rhs '"


"DiscriminatingMethod methodHeaderFor: #to:do: 'to: a1 do: a2 '"


| s |


selector numArgs == 0 ifTrue: [^selector asString , ' '].


selector isInfix ifTrue: [^selector asString , ' ' , 'rhs' , ' '].


s := ''.


(1 to: selector numArgs)



with: selector keywords do: [:i :k | s := s , k , ' a' , i printString , ' '].


^s! !

Object subclass: #Specializer

instanceVariableNames: ''


classVariableNames: ''


poolDictionaries: ''


category: 'Generic-Functions'!

Specializer comment:

'Specializer is an abstract class for CLOS-style argument specializers.  It currently houses default denials for the isXxx queries defined in its subclasses.  The class side houses some default queries.'!

!Specializer methodsFor: 'testing'!
isClassSpecializer


"No I'm not one of these..."


^false!

isEqualSpecializer


"Deny this heritage..."


^false! !


"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!


Specializer class


instanceVariableNames: ''!

!Specializer class methodsFor: 'instance creation'!
default


"The default specializer shall be whatever ClassSpecializer thinks a good default is..."


^ClassSpecializer default! !


Specializer subclass: #EqualSpecializer


instanceVariableNames: 'specializerInstance specializerBlock '


classVariableNames: ''


poolDictionaries: ''


category: 'Generic-Functions'!

EqualSpecializer comment:

'EqualSpecializers (when they are implemented, which they currently are not) will mimic CLOS-style per-instance MultiMethod specializers

Instance Variables:

specializerInstance 
<Object>
The value this EQL-specializer must match. 

specializerBlock

<BlockClosure> A one argument block that returns true if an object matches us.'!

!EqualSpecializer methodsFor: 'testing'!
= aSpecializer 


"If we are both EqualSpecializers, and our specializerInstance 

variables match, we're satisfied..."



aSpecializer isEqualSpecializer ifFalse: [^false].



^self specializerInstance = aSpecializer specializerInstance!

isEqualSpecializer


^true! !


!EqualSpecializer methodsFor: 'accessing'!

specializerBlock



^specializerBlock!


specializerBlock: anObject



^specializerBlock := anObject!


specializerInstance



^specializerInstance!

specializerInstance: anObject


^specializerInstance := anObject! !

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

EqualSpecializer class

instanceVariableNames: ''!

!EqualSpecializer class methodsFor: 'instance creation'!
on: aBlock 


"Store the block we were given..."


| s |


s := super new.


s specializerBlock: aBlock.


^s! !

Specializer subclass: #ClassSpecializer

instanceVariableNames: 'specializerClassName '


classVariableNames: ''


poolDictionaries: ''


category: 'Generic-Functions'!

ClassSpecializer comment:

'ClassSpecializers implement CLOS-style MultiMethod argument specializers.  They store the identity of the class the specializer must match.

Instance Variables:

specializerClassName <Symbol> The name of the Class we must match.  Storing the name avoids forward reference and zombie reference problems.'!

!ClassSpecializer methodsFor: 'testing'!
= aSpecializer 


"If we are both ClassSpecializers, and the Classes match, we're happy..."


aSpecializer isClassSpecializer ifFalse: [^false].


^self specializerClass = aSpecializer specializerClass!

isClassSpecializer


^true!

lessThan: rhs withArgument: arg 


"We determine order by our relative postions given the CPL for a <particular argument>..."


| cpl |


cpl := self computeClassPrecedenceListFor: arg.


^(cpl indexOf: self specializerClassName)



< (cpl indexOf: rhs specializerClassName)! !

!ClassSpecializer methodsFor: 'precedence'!
computeClassPrecedenceListFor: anObject 


"Without multiple inheritance, a Class Precedence List (CPL in CLOS parlance) comes 

down to a straight patrilinear chain all the way to 

nil (the only superclass worth having)..."



| cpl class |



cpl := OrderedCollection new: 5.
"What depth covers most of 'em?"


class := anObject class.


[class isNil]



whileFalse: 




[cpl add: class name.




class := class superclass].


^cpl!

matches: anObject 


"In CLOS, you specify the precendence of your (perhaps multiple) direct superclass(es). 

This means different arguments may have a particular class in different positions 

in their CPLs, which is why they use CPLs for this stuff."



"Yes, I know that for single inhertitance the commented line of code below 

really is equivalent, but CPLs may matter later..."


"result := anObject isKindOf: self specializerClass."


| cpl result |


cpl := self computeClassPrecedenceListFor: anObject.


result := cpl includes: self specializerClassName.


"The temporary result leaves us somewhere to put the self halt during testing..."


^result! !

!ClassSpecializer methodsFor: 'printing'!
printOn: aStream 


"ClassSpecializers print as <Junk>..."


aStream nextPut: $<.


aStream print: self specializerClass.


aStream nextPut: $>! !

!ClassSpecializer methodsFor: 'accessing'!
specializerClass


"Dig the actual class for our specializer out of Smalltalk..."


^Smalltalk at: self specializerClassName!

specializerClass: aClass 


"Store the name, not the class..."


self specializerClassName: aClass name!

specializerClassName


^specializerClassName!

specializerClassName: aSymbol


^specializerClassName := aSymbol! !

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!


ClassSpecializer class


instanceVariableNames: ''!


!ClassSpecializer class methodsFor: 'instance creation'!
default


"We could probably cache this..."


"Our default is Object (CLOS 'T'). nil superclass shenanegans 

will probably merit some thought doen 



the road..."



^super new; specializerClass: Object; yourself!

on: aClassOrSymbol


"Create a ClassSpecializer. Let callers send us Symbols, or the real McCoy.  

This may make a useful 



MultiMethod demonstration one of these days..."



| s |



s := super new.



(aClassOrSymbol isKindOf: Symbol)




ifTrue: [s specializerClassName: aClassOrSymbol]



ifFalse: [s specializerClass: aClassOrSymbol].


^s! !

Object subclass: #GenericFunction

instanceVariableNames: 'selector multiMethods discriminatingMethods methodCombination '


classVariableNames: 'GenericFunctionRegistry '


poolDictionaries: ''


category: 'Generic-Functions'!

GenericFunction comment:

'GenericFunctions implement CLOS-style families of MultiMethods, where dispatching takes not only the left-hand (receiver) argument into account, but all the other arguments to a method invocation as well.  A GenericFunction knows all the MultiMethods that ''specialize'' it.  It also has a MethodCombination object, which determines the manner in which applicable MultiMethods are executed.

Instance Variables:

selector

<Symbol>
The selector, or operator that this GenericFunction oversees.

multiMethod <Dictionary> A mapping from MultiMethod selectors to MultiMethods

discriminatingMethods <Dictionary> A mapping from Class names to DiscriminatingMethods.

methodCombination <MethodCombination> The MethodCombination used for this GenericFunction.

Class Variables:

GenericFunctionRegistry <Dictionary> A mapping from each Symbol for which a GenericFunction is defined to that GenericFunction.  This global registry ensures that one and only one GenericFunction is defined at any given time for a particular selector/operator.

'!

!GenericFunction methodsFor: 'private'!
allImplementors


"Return a SortedCollection of all the methods in the system that implement our selector..."


"This is based on Browser>>allImplementorsOf:."


"(GenericFunction on: #at:put:) allImplementors"


| aCollection |


aCollection := OrderedCollection new.


Smalltalk allBehaviorsDo: [:class | (class includesSelector: selector)




ifTrue: [aCollection add: (class compiledMethodAt: selector)]].


^aCollection!

allImplementorsOld


"Return a SortedCollection of all the methods in the system that implement our selector..."


"This is based on Browser>>allImplementorsOf:."


"(GenericFunction on: #at:put:) allImplementors"


| aCollection |


aCollection := SortedCollection new.


Smalltalk allBehaviorsDo: [:class | (class includesSelector: selector)




ifTrue: [aCollection add: class name , ' ' , selector]].


^aCollection! !

!GenericFunction methodsFor: 'printing'!
printOn: aStream 


"We might use the temporary for vowel testing one of these days..."


| title |


title := self class name.


aStream nextPutAll: title.


aStream nextPutAll: ' on: '.


aStream print: selector! !

!GenericFunction methodsFor: 'evaluation'!

apply: args 



"To apply a GenericFunction, first, determine the applicable methods 

(those for which the arguments 



satisfy the specializers). These are then sorted in the order in which 

they are applicable. Then, they 



are passed to the MethodCombination, which actually executes the methods..."



| am v s |



am := self computeApplicableMethods: args.



am isEmpty ifTrue: [self error: 'no-applicable-methods'].



s := SortedCollection sortBlock: [:l :r | l lessThan: r withArguments: args].


s addAll: am.


am := s asOrderedCollection.


v := self methodCombination





applyGenericFunction: self





withMethods: am





andArguments: args.


Transcript show: 'after mc apply'; cr.


^v!

applyReceiver: receiver withArguments: args 


"Concatentate the receiver and the given arguments and pass 'em all to apply:..."


"(Yes, this is a peculiar idiom for this, but I froze the code for now.)"


| a |


a := OrderedCollection new: args size + 1.


a add: receiver.


a addAll: args.


Transcript show: 'applying gf'; cr.


^self apply: a!

computeApplicableMethods: args 


"Return a collection of all the applicable methods, regardless of 

qualifiers, given the current 



arguments..."


| am |


am := multiMethods values select: [:m | m matches: args].


^am! !

!GenericFunction methodsFor: 'multimethod add/remove'!
add: aMultiMethod 


"Put this MultiMethod in our Dictionary of potentially applicable methods..."


"Do some goaltending first..."


self selector = aMultiMethod genericFunctionSelector unqualified ifFalse: [self error: 'Bad multimethod selector'].


multiMethods at: aMultiMethod multiMethodSelector put: aMultiMethod.


"Note that this DM isn't installed yet. This is because we may not have ensured it has a 



selector to wrap yet."


discriminatingMethods at: aMultiMethod mclass name ifAbsentPut: [



DiscriminatingMethod on: selector unqualified inClass: aMultiMethod mclass]!

remove: aMultiMethod 


"If someone is trying to remove MultiMethod from the wrong GF, catch 'em here. 

Test the unqualified 



name so as to allow the before/after qualifier gambit."



self selector = aMultiMethod genericFunctionSelector unqualified ifFalse: [self error: 'MultiMethod and GenericFunction selector mismatch'].


multiMethods removeKey: aMultiMethod multiMethodSelector ifAbsent: [self error: 'Bad multimethod selector'].



"We need to reference count these, or otherwise correctly manage them..."


"discriminatingMethods at: aMultiMethod mclass"


Transcript show: '-- Removing: ' , self printString; cr; endEntry! !

!GenericFunction methodsFor: 'accessing '!
arity


"Return the number of arguments our selector takes, including the receiver..."


^self numArgs + 1!

discriminatingMethodFor: aMultiMethod 


"Return the DiscriminatingMethod that catches invocations a particular 

MultiMethod on a particular 



first argument."



^discriminatingMethods at: aMultiMethod mclass name ifAbsent: [nil]!


discriminatingMethods


"Return the discriminating methods for this GenericFunction..."


^discriminatingMethods!

discriminatingMethods: aCollection 


^discriminatingMethods := aCollection!

methodCombination


^methodCombination!

methodCombination: aMethodCombination 


^methodCombination := aMethodCombination!

multiMethods


"Return the multimethods for this GenericFunction..."


^multiMethods!

multiMethods: aDictionary


"Store the multimethods for this GenericFunction..."


^multiMethods := aDictionary!

numArgs


"Return the number of arguments our selector takes, not including 

the receiver.  To include the receiver, use #arity..."



^selector numArgs!


selector



"Return the selector for this GenericFunction..."



^selector!


selector: aSelector 


"Set the selector for this GenericFunction..."


"Return the RHS to allow cascaded assigments."


^selector := aSelector! !

!GenericFunction methodsFor: 'test'!
trash! !

!GenericFunction methodsFor: 'initialization'!
initialize


"Start with the SimpleMethodCombination scheme for now. 


Standard will be a better default once it is working correctly..."


self methodCombination: SimpleMethodCombination new.


multiMethods := Dictionary new: 10.


self discriminatingMethods: (Dictionary new: 10)! !

"-- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- -- "!

GenericFunction class

instanceVariableNames: ''!

!GenericFunction class methodsFor: 'class initialization'!
initialize


"Initialize the GenericFunction class by creating an empty registry..."


"GenericFunction initialize"


GenericFunctionRegistry := IdentityDictionary new: 10! !

!GenericFunction class methodsFor: 'accessing'!
genericFunctions


"Return the registry..."


"GenericFunction genericFunctions"


^GenericFunctionRegistry! !

!GenericFunction class methodsFor: 'instance creation'!
new


"Don't allow uncommited GFs to be minted..."


self shouldNotImplement!

new: anObject


"Don't allow uncommited GFs to be minted for now..."


self shouldNotImplement!

on: aSelector 


"Create a new GenericFunction for the indicated selector..."


"If we've already created a generic function for this selector, return it. 

Otherwise, create a new generic function object, and register it. 

In this way, we use GenericFunction class as both a GenericFunction factory 

and repository..."



"GenericFunction on: #at:put:"



"An empty registry means we haven't been initialized, or someone 



is up to mischief. In either case, the reinitialization is indicated..."


| selector |


GenericFunctionRegistry isNil ifTrue: [self initialize].


selector := MultiMethod unqualifiedSelectorFor: aSelector.


^GenericFunctionRegistry at: selector



ifAbsent: 




["If a GF already exists for this selector, return it, otherwise, create one..."




| gf |




gf := super new.




gf initialize.




gf selector: selector.




GenericFunctionRegistry at: selector put: gf.




gf]! !

!GenericFunction class methodsFor: 'testing'!
isGenericFunction: aSelector 


"Let the caller know whether we've got this selector in the registry..."


"We might want to hide the registry mechanism behind some protocol at some point..."


| selector |


selector := MultiMethod unqualifiedSelectorFor: aSelector.


^GenericFunctionRegistry includesKey: selector! !

GenericFunction initialize!

Object subclass: #Medium


instanceVariableNames: ''


classVariableNames: ''


poolDictionaries: ''


category: 'MultiMethod-Menagerie'!

Medium subclass: #Land

instanceVariableNames: ''


classVariableNames: ''


poolDictionaries: ''


category: 'MultiMethod-Menagerie'!

Object subclass: #Animal

instanceVariableNames: 'legs '


classVariableNames: ''


poolDictionaries: ''


category: 'MultiMethod-Menagerie'!

!Animal methodsFor: 'ethology'!
AfterMoveThrough: medium <Medium> 


"(Mammal new) moveThrough: (Water new)"


"(Mouse new) moveThrough: (Land new)"


"(Mammal new) speak"


Transcript show: 'AFTER <Animal>AfterMoveThrough<Medium>...'; cr; endEntry!

BeforeMoveThrough: medium <Medium> 


"(Mammal new) moveThrough: (Water new)"


"(Mouse new) moveThrough: (Land new)"


"(Mammal new) speak"


Transcript show: 'BEFORE <Animal>BeforeMoveThrough<Medium>...'; cr; endEntry!

AfterMoveThrough: a1 "* * * DiscriminatingMethod stub method... * * *"  ^self!

BeforeMoveThrough: a1 "* * * DiscriminatingMethod stub method... * * *"  ^self!

installedDiscriminatingMethodSource


"* * * The method you are looking at is an INSTALLED DiscriminatingMethod for the current selector. It's actual 


code is hidden. * * *"


"Don't change and accept this code unless you want a method named #installedDiscriminatingMethodSource..."


"The source pointer for this method is copied to that of each DiscriminatingMethod when it is installed..."


^self!

speak


Transcript show: 'I am an animal';cr;endEntry.


^66! !

!Animal methodsFor: 'accessing'!
legs


^legs!

legs: n 


^legs := n! !

Animal subclass: #Mammal

instanceVariableNames: 'hasHair aquatic '


classVariableNames: ''


poolDictionaries: ''


category: 'MultiMethod-Menagerie'!

!Mammal methodsFor: 'accessing'!
aquatic


^aquatic!

aquatic: aBoolean


^hasHair := aquatic!

hasHair


^hasHair!

hasHair: aBoolean


^hasHair := aBoolean! !

!Mammal methodsFor: 'ethology'!
AfterMoveThrough: medium <Medium> 


"(Mammal new) moveThrough: (Water new)"


"(Mouse new) moveThrough: (Land new)"


"(Mammal new) speak"


Transcript show: 'AFTER <Mammal>AfterMoveThrough<Medium>...'; cr; endEntry!

BeforeMoveThrough: medium <Medium> 


"(Mammal new) moveThrough: (Water new)"


"(Mouse new) moveThrough: (Land new)"


"(Mammal new) speak"


Transcript show: 'BEFORE <Mammal>BeforeMoveThrough<Medium>...'; cr; endEntry!

moveThrough: medium <Land>


"(Mammal new) moveThrough: (Water new)"


"(Mouse new) moveThrough: (Land new)"


"(Mammal new) speak"


Transcript show: 'Mammals can usually move over land'; cr; endEntry!

moveThrough: medium <Medium> 


"(Mammal new) moveThrough: (Water new)"


"(Mouse new) moveThrough: (Land new)"


"(Mammal new) speak"


Transcript show: 'Mammals can usually move adequately through any Medium for at least brief periods of time...'!

AfterMoveThrough: a1 "* * * DiscriminatingMethod stub method... * * *"  ^self!

BeforeMoveThrough: a1 "* * * DiscriminatingMethod stub method... * * *"  ^self!

speak


Transcript show: 'I am am a Mammal';cr;endEntry.


^super speak! !

Mammal subclass: #Mouse

instanceVariableNames: 'favoriteCheese '


classVariableNames: ''


poolDictionaries: ''


category: 'MultiMethod-Menagerie'!

!Mouse methodsFor: 'accessing'!
favoriteCheese


^favoriteCheese!

favoriteCheese: cheese


^favoriteCheese := cheese! !

!Mouse methodsFor: 'ethology'!
moveThrough: medium <Land>


"GenericFunction initialize"


"(Mammal new) moveThrough: (Water new)"


"(Mouse new) moveThrough: (Land new)"


"(Mammal new) speak"


"(GenericFunction on: #moveThrough:) inspect"


"(GenericFunction on: #moveThrough:) methodCombination: StandardMethodCombination new"


"(GenericFunction on: #moveThrough:) methodCombination: SimpleMethodCombination new"


"(GenericFunction on: #moveThrough:) methodCombination: SubStandardMethodCombination new"


thisContext callNextMethodWithArguments: nil.


Transcript show: 'Mice move quite well over land'; cr; endEntry!

installedDiscriminatingMethodSource


"* * * The method you are looking at is an INSTALLED DiscriminatingMethod for the current selector. It's actual 


code is hidden. * * *"


"Don't change and accept this code unless you want a method named #installedDiscriminatingMethodSource..."


"The source pointer for this method is copied to that of each DiscriminatingMethod when it is installed..."


^self!

speak


"Mouse new speak"


Transcript show: 'I am am a Mouse'; cr; endEntry.


^super speak! !

!Compiler class methodsFor: 'simulating'!
simulateAgain: expr


"Simulate the evaluation of expr,


without flushing the cache"


| method ctx root dummy |


method := Compiler compileClass: Object selector: #doIt source: 'doIt ^(', expr, ')'.


dummy := CompiledMethod bytes: #() literals: #() numArgs: 0 numTemps: 0 maxDepth: 1 needsFrame: true hybrid: false forContext: false.


dummy mclass: Object.


root := MethodContext sender: nil receiver: nil method: dummy arguments: #().


ctx := MethodContext sender: root receiver: nil method: method arguments: #().


[ctx := ctx interpretNextInstructionFor: ctx.


(ctx isKindOf: Array) ifTrue: [ctx := ctx at: 1]. "<BF>"


ctx == root]



whileFalse: [].


^ctx top! !

!Symbol methodsFor: 'converting'!
unqualified


"Pass this to where it doesn't really belong, for now..."


^MultiMethod unqualifiedSelectorFor: self! !

!SequenceableCollection methodsFor: 'copying'!
rest


"This goes well with first and last..."


"For frustrated Lisp'ers who miss CDR..."


"#() rest #()"


"#(1) rest #()"


"#(1 2) rest #(2)"


"#(1 2 3) rest #(2 3)"


"'brat' rest 'rat'"


self size < 2 ifTrue: [^self copyEmpty: 0].


^self copyFrom: 2 to: self size! !

!Context methodsFor: 'simulation-debugger'!
sendFlagSet: s 


"Sneak a value in for this flag..."


Send := s! !

!Context methodsFor: 'multimethod support'!
callNextMethod


"If you needs an example of a method where transformations that would 

normally be considered as 


behavior preserving might not be, consider 

#applyGenericFunction:withMethods:andArguments: in 



the presence of this method..."



| applyContext gf am args mc |



applyContext := self firstContextWithSelector: #applyGenericFunction:withMethods:andArguments:.


gf := applyContext tempAt: 1.


am := applyContext tempAt: 2.


args := applyContext tempAt: 3.



"mc := applyContext receiver outerContext receiver."


mc := applyContext receiver.


am size <= 1 ifTrue: [^nil].


mc



applyGenericFunction: gf



withMethods: am rest



andArguments: args!

callNextMethodWith: a1 


^self callNextMethodWithArguments: (Array with: a1)!

callNextMethodWith: a1 with: a2 


^self callNextMethodWithArguments: (Array with: a1 with: a2)!

callNextMethodWith: a1 with: a2 with: a3 


^self callNextMethodWithArguments: (Array




with: a1




with: a2




with: a3)!

callNextMethodWithArguments: arguments 


"Find a MethodCombinationContext on the stack, and hand off to it. When 

it's done, return its 



result..."


| applyContext methodCombinationContext result |


applyContext := self firstContextForInstanceOf: MethodCombinationContext.


methodCombinationContext := applyContext receiver.


result := methodCombinationContext applyNextWithArguments: arguments.


^result!

firstContextForInstanceOf: aClass 



| c |



c := self.



[c isNil ifTrue: [^nil].



(c receiver isKindOf: aClass)




ifTrue: [^c].



Transcript show: c selector; cr; endEntry.



c == self sender ifTrue: [^nil].



c := self sender] repeat!

firstContextWithSelector: aSelector 


"With a doIt, you should find the context below..."


"thisContext firstContextFor: #performMethod:arguments:"


| c |


c := self.


[c isNil ifTrue: [^nil].


c selector == aSelector ifTrue: [^c].


Transcript show: c selector; cr; endEntry.


c == self sender ifTrue: [^nil].


c := self sender] repeat!

hasNextMethod


"ERROR: This should be handed off to the MethodCombinationContext!!!!!!..."


| applyContext am |


applyContext := self firstContextWithSelector: #applyGenericFunction:withMethods:andArguments:.


am := applyContext tempAt: 2.



"If there are any methods left, say 'right this way'..."


^am rest isEmpty not!

!Context class methodsFor: 'class initialization'!
sendFlagSet: s 


"Sneak a value in for this flag..."


Send := s! !

!ParameterNode methodsFor: 'multimethod support'!
getTypeInfo


"Since we have some test methods with type expressions, we don't flag them for now, 


but arbitrarily treat them as default specializers..."


type isNil



ifTrue: [^ClassSpecializer on: Object name]



ifFalse: [(type isKindOf: VariableNode)





ifTrue: [^ClassSpecializer on:  type name asSymbol]





ifFalse: ["self error: 'Bad Type Expression'"






^Specializer default]]!

hasTypeInfo


"For a ParameterNode, just see if a type expression was given at all..."


^type ~= nil! !

!MethodNode methodsFor: 'multimethod support'!
getExperimentalSelector


"(MultiTest parseTreeForMethod: #Junk:with:) getExperimentalSelector #'Junk:<MultiTest>with:<Junk>'"


"(MultiTest parseTreeForMethod: #'Junk:<MultiTest>with:<Junk>') getExperimentalSelector"


self hasTypeInfo ifFalse: [^selector]



ifTrue: 




[| specializers newSelector words |




newSelector := ''.




specializers := self getTypeInfo.




words := selector isKeyword ifFalse: [Array with: selector]







ifTrue: [selector keywords].




words with: specializers do: [:w :s | newSelector := newSelector , w , s printString].




^newSelector asSymbol]!

getOriginalSelector


"Since we intercept the selector accessor and return a 

MultiMethod selector (using getSelector) in 



response to the selector accessor, we provide this method 

for cases where the original selector is 



needed..."



^selector!


getSelector


"If we are not a multimethod, return the usual selector, otherwise 

make a dotted selector with the 



types at the beginning..."



self hasTypeInfo ifFalse: [^selector]




ifTrue: 





[| specializers newSelector |





newSelector := ''.





specializers := self getTypeInfo.




specializers do: [:s | newSelector := newSelector , s specializerClass printString].




newSelector := newSelector , '.' , selector.




^newSelector asSymbol]!

getTypeInfo


^block getTypeInfo!

hasTypeInfo


"Ask our code block, which is a BlockNode, about this..."


^block hasTypeInfo! !

!MethodNode methodsFor: 'accessing'!
selector


"Call into the multimethod code for this..."


"^selector"


^self getSelector! !

!BlockNode methodsFor: 'multimethod support'!
getTypeInfo


"Glean the type information each of our arguments..."


^arguments collect: [:arg | arg getTypeInfo]!

hasTypeInfo


"If any of our arguments had a type specifier, flag us as a potential MultiMethod..."


arguments do: [:arg | arg hasTypeInfo ifTrue: [^true]].


^false! !

!Behavior methodsFor: 'creating method dictionary'!
removeSelector: selector 


"Assuming that the message selector is in the receiver's method dictionary,


remove it.  If the selector is not in the method dictionary, create an error


notification."


| method |


method := methodDict at: selector ifAbsent: [self error: 'Removing non-existant method'].


(method isKindOf: MultiMethod) ifTrue: [method removeFromGenericFunction].


"Resume stock code here..."


methodDict removeKey: selector.


self flushVMmethodCacheEntriesFor: selector! !

!Behavior methodsFor: 'accessing method dictionary'!
parseTreeForMethod: aSymbol


^self parserClass new



parse: (self sourceCodeAt: aSymbol) readStream



class: self



noPattern: false



context: nil



notifying: (SilentCompilerErrorHandler new failBlock: [^nil])



builder: ProgramNodeBuilder new



saveComments: true



ifFail: [^nil]! !

!Behavior methodsFor: 'compiling'!
compile: code notifying: requestor ifFail: failBlock 


"Compile the argument, code, as source code in the context of the receiver and 


install the result in the receiver's method dictionary. The argument requestor is to 


be notified if an error occurs. The argument code is either a string or an 


object that converts to a string or a PositionableStream on an object that 


converts to a string. This method does not save the source code. 


Evaluate the failBlock if the compilation does not succeed."


| methodNode selector |


methodNode := self compilerClass new





compile: code





in: self





notifying: requestor





ifFail: failBlock.


methodNode hasTypeInfo ifTrue: [methodNode := (MethodWrapperCompiler new methodClass: MultiMethod)






compile: code






in: self






notifying: requestor






ifFail: failBlock].


selector := methodNode selector.


self addSelector: selector withMethod: methodNode generate.


^selector!


!CompiledCode methodsFor: 'testing'!

isDiscriminatingMethod



"Part of the GenericFunction code..."


^false!

isMultiMethod


"Part of the GenericFunction code..."


^false!

isWrapper


"Part of the method wrapper code..."


^false! !

!MethodNodeHolder methodsFor: 'multimethod support'!
getExperimentalSelector


"Duct tape..."


^methodNode getExperimentalSelector!

getOriginalSelector


"More duct tape..."


^methodNode getOriginalSelector!

getTypeInfo


"Forward this rascal too..."


^methodNode getTypeInfo!

hasTypeInfo


"Forward this rascal..."


^methodNode hasTypeInfo! !

!ClassDescription methodsFor: 'compiling'!
compile: code classified: heading notifying: requestor 


"Compile the argument, code, as source code in the context of the receiver 


and install the result in the receiver's method dictionary under the 


classification indicated by the second argument, heading. The third 


argument, requestor, is to be notified if an error occurs. The argument code 


is either a string or an object that converts to a string or a 


PositionableStream on an object that converts to a string."


| selector method |


selector := self





compile: code





notifying: requestor





ifFail: [^nil].


(methodDict at: selector)



sourcePointer: (SourceFileManager default





storeMethodSource: code asString





class: self





category: heading





safely: true).


self organization classify: selector under: heading.


"Begin the multimethod alterations here..."


"We could almost call the current method recursively, if we generated a better method string..."


method := methodDict at: selector.


((method isKindOf: MultiMethod)



and: [(methodDict at: method genericFunctionSelector ifAbsent: [nil]) isNil])



ifTrue: 




[| sel met |




sel := method genericFunctionSelector.




met := DiscriminatingMethod createEmptyMethodFor: sel.




self addSelector: sel withMethod: met.




(methodDict at: sel) sourcePointer: (SourceFileManager default






storeMethodSource: (DiscriminatingMethod emptyMethodFor: sel)






class: self






category: heading






safely: true).




self organization classify: sel under: heading.




"Give the MM a change to install the DM here..."




method install].


"Resume normal code here..."


^selector!

compile: code notifying: requestor ifFail: failBlock  


"Intercept this message in order to remember system changes."


| methodNode compiledMethod selector |


methodNode := self compilerClass new





compile: code





in: self





notifying: requestor





ifFail: failBlock.


selector := methodNode selector.


"If this method has type information, compile it again as a MultiMethod..."


methodNode hasTypeInfo ifTrue: [methodNode := (MethodWrapperCompiler new methodClass: MultiMethod)






compile: code






in: self






notifying: requestor






ifFail: failBlock].


"Resume old code here..."


(methodDict includesKey: selector)



ifTrue: [ChangeSet current changeSelector: selector class: self]



ifFalse: [ChangeSet current addSelector: selector class: self].


compiledMethod := methodNode generate.


"If this is a MultiMethod, find it's funny selector, and complete


it's initialization..."


(compiledMethod isKindOf: MultiMethod)



ifTrue: 




[selector := methodNode getExperimentalSelector.




selector := ('<' , self printString , '>' , selector) asSymbol.




compiledMethod





on: methodNode getOriginalSelector





using: selector





withArgumentSpecializers: methodNode getTypeInfo].


"Resume old code here..."


self addSelector: selector withMethod: compiledMethod.


^selector!

!Parser methodsFor: 'initialize-release'!
initScanner


"Turning on extendedLanguage enables <Xxx> type expressions in method defintions..."


super initScanner.


typeTable := TypeTable.
"Default language choice:"


oldLanguage := true.


newLanguage := true.


extendedLanguage := true! !
!Parser methodsFor: 'expression types-^value/error'!

argument



| arg argType oldPos oldToken oldTokenType |



tokenType == #word ifFalse: [^self expected: 'Argument name'].



arg := builder declareVariableName: token.


arg sourcePosition: mark.


self scanToken.


"Save these elements of the parser's state in case we see a pragma..."


oldPos := source position.


oldToken := token.


oldTokenType := tokenType.


"If this turns out to be a pragma, try to back up and say there was no type <gulp>..."


(extendedLanguage and: [token == #<])



ifTrue: 




[self scanToken.




(tokenType == #keyword and: [self pragmaKeywords includes: token asSymbol])





ifTrue: 






[source position: oldPos - 1.






token := oldToken.






tokenType := oldTokenType.






argType := nil]





ifFalse: 






[self typeExpression ifFalse: [self expected: 'Type expression'].






argType := parseNode.






(self matchToken: #>)







ifFalse: [self expected: '>']]]



ifFalse: [argType := nil].


^builder newParameterVariable: arg type: argType!

;;;

;;; animal -- A rather prosaic taxonomic example class hierarchy...

;;;

(defclass animal () 

  ;; Define the slots for generic beasts here...

  ((species :accessor species :initarg :species :initform "An Animal")

   (legs :accessor legs :initarg :legs :initform 0 :type fixnum)

   ;; Define a slot with the :class allocation-type.  This is

   ;; similar to a Smalltalk class variable.  For fun, try giving it

   ;; a type.  (Vishnu is the second member of the three member Hindu 

   ;; trinity...)

   (creator :accessor creator :initform "Brahma" :type (string 255)

            :allocation :class :documentation "Shiva is the destroyer..."))

  ;; Use the usual metaclass.  STANDARD-CLASS is the default, so

  ;; the line below is, in effect, a no-op...

  (:metaclass standard-class) ;An inline (single) comment (FRED does nothing)...

  ;; Give no useful information here...

  (:documentation "I am a generic beast..."))

;;;

;;; mammal -- Animals that give milk...

;;;

(defclass mammal (animal) 

  ((breasts :accessor breasts :initform 2 :initarg :breasts))

  (:documentation "I give milk...")

  ;; Try out the :default-initargs feature here...

  (:default-initargs :species "Some sort of Mammal" :legs 2))

;;;

;;; mouse -- A rodent...

;;;

(defclass mouse (mammal)

  ((favorite-cheese :accessor favorite-cheese :initform "Swiss"

                    :initarg :favorite-cheese))

  (:documentation "I'm a mouse...")

  ;;:defaut-initargs are inherited.  This is the only class option

  ;;that is, says Keene...

  (:default-initargs :species "Mouse" :legs 4)

)

;;;

;;; speak -- A generic speak function...

;;;

(defgeneric speak (who) ;Takes just a dummy lambda list... 

  (:documentation "Will the animals talk back?")

  (:argument-precedence-order who))

(defmethod speak ((who animal))

  (format t "I'm an animal:  ~A~%" who))

(defmethod speak :before ((who animal))

  (format t "Before specializing on animal:  ~A~%" who))

(defmethod speak :after ((who animal))

  (format t "After specializing on animal:  ~A~%" who))

;;;

;;; speak mouse -- primary method (This returns the value)...

;;;

(defmethod speak ((who mouse))

  (format t "I am but a mouse...~%")

  (format t "call-next-method:  ")

  ;;This code illustrates the use of next-method-p.  If call-next-method

  ;;is called in a context where no next most specific method is 

  ;;applicable, CLOS will signal an array.  (Contrast this with the

  ;;treatment of usual-xxx in Object Lisp.)  The next-method-p predicate

  ;;can be used to avoid such mishaps.  In the event that no next method

  ;;is defined, we call the CL error function...

  (if (next-method-p)

    (call-next-method)

    (error "No next method (Should never occur...), who:  ~A~%" who))

  ;;Return an atypical, easy to identify result...

  99)

;;;

;;; Called for side effects, doesn't affect the value.  In the core framework,

;;; any values of before- or after-methods are ignored, and the generic function

;;; returns the value of the primary method.  If there is no applicable

;;; primary method, an error is signaled...

;;;

(defmethod speak :before ((who mouse))

  (format t "Before:  Eek Eek...~%"))

;;;

;;; Called for side effects, doesn't affect the value...

;;;

(defmethod speak :after ((who mouse))

  ;;I can't directly modify the returned value, but I can cause side effects...

  (format t "After:  Eek Eek...~%"))

;;;

;;; :around methods use call-next-method to explicitly control 

;;; the sequencing of methods.  The :around methods are called

;;; from most to least specific, and then the entire "core framework"

;;; is called.  Before-methods, primary-methods, and after-methods comprise

;;; CLOS's core framework.  The call-next-method mechanism is also

;;; used in primary methods to invoke "shadowed" methods.  Before-methods

;;; are called in most-specific to least-specific (most general) order.

;;; After-methods are called in least-specific to most-specific order.

;;; The core framework is said to employ a "declarative" approach.

;;; The call-next-method scheme is thought of as an "imperative" approach.

;;; If call-next-method is invoked with no arguments, the original arguments

;;; are used...

;;;

;;; (An additional novelty:  The &aux variable...)

;;;

(defmethod speak :around ((who mouse) &aux result)

  (format t "In mouse :around method, before call-next-method...~%")

  (setf result (call-next-method))

  (format t "In mouse :around method, after call-next-method:  ~A~%" result)

  result)

[image: image1.jpg]Dla ing E 8 [=] 3
I
% MethodNode
[ [sourcePasition
o frormment
o Jparent VariableNode
o se\ec‘mv i sourcePositon
priritive
2| [pimitveSaurcsPasiion name
ol pook— | MessageNode
= attributes BlockNode [sourcePasitio ‘Symbal*
[sourcePosition| lcomment #
© cornment Parametertiody parent Loitlelile
n ‘aray/ [ourcePosition]
parent receiver
L arguments ——— selector ! comment
- body Aray arguments parent
= i name
precedence 2
lexpanded ——| ‘nteger’
Sequencetlode expansion | lse
sourcePosition —
cormment
parent
hermporres 4 VariableNods
statements sourcePositon
OrderedCollection comment
rstindex s
Iastindex i ———
t
b
b




[image: image2.jpg]T System Full Browser

HotDraw-VisualCreation
Drawing-Inspector

HotPaint

MavingDrawing
Network-Drawing
Method-Wrappers

Method Wrappers-Applications
Generic-Experimental
Generic-Functions
—" @ instance

[ supers

O class

® subs

accessin
fetholo

|

Object
Animal
|51 Mammal

o <Mammal>AfterMoveThrough:<Mezl
<Mammal>BeforeMoveThrough:<
<Mammal>moveThrough:<Land>
<Mammal>moveThrough:<Mediu

M <Mouse>moveThrough: <Land> (Mou

: (Mammal)

BeforeMoveThrough: (Mammal)

moveThrough (Mouse)

speak (Mammal)

il AfterMoveThroug

I

k——————————"

=

® names

message selector and argument names
"comment stating purpose of message”

I temporary variable narmes |
staternents





[image: image3.jpg]T System Full Browser

HotDraw-VisualCreation
Drawing-Inspector
HotPaint
MavingDrawing
Network-Drawing
Method-Wrappers

accessing
ethology

|

<Mammal>BeforeMoveThrough:<
<Mammal>moveThrough:<Land>
<Mammal>moveThrough:<Mediu
M <Mouse>moveThrough: <Land> (Mou
: (Mammal)

il AfterMoveThroug

[f| <Mammal>AfterMoveThrough:<Me!

Object

Method Wrappers-Applications ) BeforeMoveThrough: (Mammal)

Generic-Experimental - moveThrough: (Mouse)

Generic-Functions o | speak (Mammal)

" @linstance Oclass —_—"'s B
= supers ™ subs ® names

moveThrough: medium <Land>
"GenericFunction initalize”
*(Mammal new) moveThrough: (Water new)”
(Mouse new) moveThraugh: (Land new)”
*(Mammal new) speak”
*(GenericFunction on: #moveThrough
*(GenericFunction on: #moveThrough
(GenericFunction on: #moveThrough
*(GenericFunction on: #moveThrough

inspect”

methodCombination: StandardMethodCombination new"
methodCambination: SimpleMethodCombination new"
methodCombination: SubStandardMethodCombination new"

thisContext callNextMethodwithArgurments: nil
Transcript show: Mice move quite well over land; cr; endEntry





12:49
* 1 of 40 *
11/17/97

