Object-Oriented Reflection

and

Metalevel Architectures

Workshop W5

ECOOP '92

Utrecht, the Netherlands

Brian Foote

30 June 1992

Tuesday

ECOOP '92 Workshop on

Object-Oriented Reflection and Metalevel Architectures

30 June 1992, Tuesday

09:00-10:00

Introduction, Reflective Principles (Moderator: Foote)

B. Foote et. al.
Introduction

P. Steyaert
Towards a Calculus for Objects and

its Reflective Variant

Discussion

10:00-10:15

<BREAK>

10:15-11:15

Reflection in Static Languages (Moderator: Matsuoka)

J. Templ

Reflection in Oberon

F. Buschmann, K. Kiefer, F. Paulish, M. Stal

A Runtime Type Information System for C++

Discussion

11:15-11:30

<BREAK>

11:30-12:30

Reflection in Dynamic Languages (Moderator: Cointe)

H. Davis

Reflectively Optimizing Generic Function Dispatch

B. Foote

Objects, Reflection, and Open Languages

Discussion

12:30-14:00

<LUNCH> In the conference center...

14:00-15:00

Reflection and Distributed Programming (Moderator: Matsuoka)

A. Elièns

Metaprograming in DLP

D. Liib

A Note on Communicational Reflection

Discussion

15:00-15:15

<BREAK>

15:15-16:15

Reflection and Concurrency (Moderator: Cointe)

H. Wu

A Note on the Implications and Implementation

of Reflection

Y. Ichisugi, S. Matsuoka, A Yonezawa

RbCl: A Reflective Concurrent Language

without a Run-time Kernel

Discussion

16:15-16:30

<BREAK>

16:30-17:30

Distributed Applications (Moderator: Foote)

T. de Ridder
Applying Reflection to Distributed Administrative

Environments

P. Dourish
Applying Reflection to CSCW Design

Discussion

17:30-17:45

Concluding Remarks

ECOOP '92 Workshop on

Object-Oriented Reflection and Metalevel Architectures

CONTENTS

Harley Davis

Reflectively Optimizing Generic Function Dispatch

Paul Dourish

Applying Reflection to CSCW Design
Anton Elièns

Metaprograming in DLP
Brian Foote

Objects, Reflection, and Open Languages
Yuuji Ichisugi, Satoshi.Matsuoka, Akinori Yonezawa

RbCl: A Reflective Concurrent Language without a Run-time Kernel
Theo de Ridder

Applying Reflection to Distributed Administrative Environments
Handong Wu

A Note on the Implications and Implementation of Reflection
Donald. Liib

A Note on Communicational Reflection
Josef Templ

Reflection in Oberon
Frank Buschmann, Konrad Kiefer, Frances Paulish, Michael Stal

A Runtime Type Information System for C++

Organizers

Brian Foote

University of Illinois

Objects, Reflection, and Open Languages

Brian Foote

30 June 1992

Tuesday

ECOOP '92 Workshop W5

Object-Oriented Reflection and Metalevel Architectures

Object-Oriented Object-Oriented Languages

The marriage of

object-oriented programming and design techniques
with reflection promises to dramatically change the way that we

think about, organize, implement, and use
programming languages and systems

Extensibility

Programmers have long sought to ways to subvert and exploit their

programming languages and environments to meet their needs

They recognize that there is a potential

for tremendous leverage at the language level
Most languages limit extensibility
Support for new features such as concurrency, backtracking

or object persistence often requires a whole new language
Reflection allows such features to be built into existing languages

Reflective Languages are Open Ended
A language with an

object-oriented reflective metalevel architecture
allows existing metaobjects to serve as the

basis for customized extensions.

New objects may also be selectively substituted
for existing parts of a running system

The full power of the object-oriented approaches can be brought
to bear on the programming system itself

Open Systems need Open Languages
Object-oriented reflection is the first approach that provides

enough power and flexibility

to make open languages practical

Basic Vocabulary

A language with an

object-oriented metalevel architecture
is one in which programs are themselves constructed

out of dynamic first-class objects.

Such objects are often refered to as

metalevel objects or metaobjects
A reflective object-oriented language
allows a running program to look at or change
the very objects out of which it is built.

Together, these metaobjects

constitute the system's self-representation
These objects reify otherwise implicit aspects of the

underlying system

Changes made to these objects are immediately

reflected in the actual, live, dynamic state

of the system itself, and vice versa

The requirement that this dynamic consistency be

maintained by the system is sometimes refered to as the

causal connection requirement

A central premise:
Object-oriented languages and programs are as much themselves an appropriate domain for object-oriented techniques as are windowing systems, operating systems, or accounting systems.

An Object-Oriented Framework

for

Reflective Metalevel Architectures

A brief justification:
The metalevel architecture, or metaarchitecture

of a language

explicitly defines the structure of those objects that comprise

the underpinnings of the lanaguage

Reflection brings a number of linguistic and

extra-linguistic issues that had heretofore been dealt with

in ad hoc fashions under a single umbrella

A language with a reflective metaarchitecture allows

programs to directly manipulate the very objects that define

that program's behavior

A uniform object-oriented reflective metaarchitecture allows functionality

to be distributed across a constellation of distinct metalevel objects

These components can be individually extended and customized

The full power of the object-oriented approaches can be brought

to bear on the programming environment itself

An object-oriented framework can support an evolving family of

object-oriented metalevel architectures

Because of the distinctive lifecycle characteristics of an object-oriented

object-oriented framework, it will be both the means by

and the end to which this investigation has been conducted

Possible Metalevel Components

(Potential Metaobjects)

(Things one might reify)

A Metaobject Pallette
In no particular order...
Variables/Slots

Selectors/Generic Functions/Keys/Operators

Messages

Evaluators/Processors/Interpreters

Method Dictionaries/Script/Scripts Sets/Role//Containers/Behaviors

Records/Repetoire/Relation/Table/Index

A-List/Association/Pair/Tuple/Entry

Handles/Pointers/Names/Addresses/Locations/References/OOPs

Environments

Continuations

Contexts (Method, Block)

Mailboxes/Message Queues

State Memory/Stores/Storage

Blocks/Closures

Classes

Types

Prototypes/Traits

Signatures/Protocols

Methods (Primitive and otherwise)

Code/Expressions/Parse Trees/Byte Codes/Forms

(Denotations?)

Processes/Theads/Engines

...and last but not least:
Objects

Integers/Floats/Reals/Strings

Arrays/Aggregates/Structures/Collections/Lists

(other primitive objects)

Design Principles

(or at least, goals)

Message Passing at the Bottom

all computation shall be conducted via message passing

Object-Oriented Uniformity and Openness

everything shall be a first class object
(including variables, "code", contexts, oops?)

Malleable Self-Representation

computations shall be represented by first class objects

at a semanticallly interesting level

Extensionality

behavior only shall determine an object's identity

(The Duck Test)

Inheritance is signature composition
at least from an extensional standpoint

State and Behavior

shall be externally indistinguishable

(state is, of course, architecturally significant

at certain levels)

Active Dispatching vs. Passive Lookup

shall be externally indistinguishable

Dynamic vs. Static Scope

That is, name binding, particularly for closures, will be handled by explicit runtime objects.

Imperative Declarations

Declarations are executable imperatives that have a temporal scope. A declaration is a dynamic invocation of a mechanism that enforces the declarations intended consequences.

Stratification

The architecture should be cleanly layered.

The distinction between application dependend and independent

layers will often be one of degree

Factoring

Significant elements of the system (including the interpreter itself)

will be distribubuted across a constellation of objects

Stratification and Factoring can be thought of

a suggesting a distributed vertical and horizontal organization

Necessity is...

A good sign that a programming language

feature is necessary is when a lot of people go to

a good deal of trouble to revinvent it in cumbersome ways

in existing languages

Smalltalk programmers have shown

remarkable ingenuity in getting around the VM barrier...
Encapsulators (Pascoe)

Messick and Beck (Active Variables, Advised Methods.)

Borning (ThingLab)

Randy Smith (ARK)

ACTRA (Thomas)

ACTalk (Briot)

That method dictionary hack from '90 or '91...

C++

Object-orientation in the first place...

...let alone dynamic object-orientation (Cox, Burkhardt)

Tiemann (Wrappers)

Various persistent object schemes (BKS's Poet, Borland's OWL)

Various resource management schemes

Lisp

God knows how many people (re-)invented various

object-orieted and reflective features

Shooting Yourself in the Foot Revisited

If it is true that everyone is in the language

design biz these days,

then we should give 'em the most powerful

tools we can, and stand back...

Just because English is a powerful enough language

to allow George Bush to do some of the things he does with it

doesn't mean we have to ban the English Language...

Power is not the problem when

it comes to bad code...

People that think that extensible languages are the

primary cause of unreadable code have graded

too many machine problems

They know what they expect to see, and don't

want a curve thrown to them by way of its expression...

The most dangerous characteristic of

modern program languages and environments is

that they allow a program to be entered and considered correct

w/o any effort having been made to tell subsequent

readers what the original author knew about

what was going on...

C++

has done wonders to allay some of the doubts of the

too much power crowd...

Assignments, other operators, and just about any

function in the world can be overloaded.

References and explicit conversion allow the language

to wreak all kinds of potential havoc behind your back...

If six turned out to be nine

Jimi Hendrix might not have been upset,

but that prospect terrifies a lot of language designers...

Programmers are responsible grown-ups

(at least the ones that are getting paid...)

A long, sad history...

ADA and Ironman banned extensibility

The Tao of objects too...

The reactionary, counter-revolutionary acceptance of

Pascal over Algol 68...

Pascal was like Esperanto: Simple but useless

Like another victory over totalitarianism, ours over Pascal

is taken for granted...

C over Pascal: Has justice prevailed?

Has Algol 68 been vindicated?

C++: Algol 68 with vtables...

Algol 68 failed for three reasons:

Compiler writers were inept

Programmers were lazy

The definition was impenitrable

(excessive formalism help sink it)

How many people do you know who got

past the Winnie-the-Pooh quotes...

We still use:

coercions (widening voiding),

dereferencing, references,

slices, orthogonality

union, long, void, pragma

stroped keywords, colateral clauses (ahead of their time)

ANSI C only just caught up to Algol 68

in terms of suitability for brute force object hacking...

Koenig's manipulators were based on Algol 68 layout procedures...

Store Models

Could there be more than one?

Why not?

Store polymorphism could be interesting...

Smalltalk calls this level the Object Memory
The OM is responsible for garbage collection

and is the basis for image snapshots...

Instance Models

Smalltalk

Two parts:

An Object Pointer (OOP)

The instance

class pointer

fixed part

indexable part

ABCL/R

state

behavior

evaluation

message queue

Super-Ego

store

repetoire

ensemble

<queue>

Dispatching Models

A number of system elements play a role

Instance

Class

Operator
Other Specializers

Context

Current Evaluator

In Super-Ego, these are part of Ensemble Objects

Ensemble entries

atom$, return$, block$, method$, primitive$

sequence$, collection$

while$, top$, send$, get$, set$

reflect$

atom, method, primitive, block, send

Primitive operators are thought of as cached
Hence, idempotence is exploited to short circuit the tower

Architectural Issues

Structural

Store

Instance

State

Templates

Sharing

Scripts

Computational

Semantics

Dispatching

Variables

Primitives

Closures

Context

Control

Namespace

Animus

Implementation

Is it visible?

Do we embrace it as a white box?

Or pretend its beneath us, Laputian-style?

Frameworks may make it possible to embrace,

rather than ignore, implementation differences...

Consder, for instance, polymorphic code generators...

There is an interesting tension between

object-oriented uniformity and low level visibility

Do you chose one, the other, or both?

A point: Tables beat (even) frameworks.

If you can push all the details into the data

that is good...

The O**2 experience is a drive towards pushing

more complexity (control?) into the data structures...

The camps:

Lisp: Unemcumbered linguistic licensiousness

The linguistic imperialists

C: The pragmatists

laisse faire ... Languages grow unzoned, like Houston

Pascal: the ministry of computing

Linguistic totalitarians...

Ways of Dealing with Regress

Circularity

Smalltalk class/metaclass relationship

Lazy Reification

3-KRS Metaobjects
Induction

Base case differs from other

Some language designs are Laputian,

and don't ground out at all

Some are built on rigid, immovable foundations

Some are like the surface of Jupiter...

...with language and implementation objects coexisting...

Conclusions

Objects make it possible to treat languages themselves

as dynamic, first-class, evolving parts of a system,

that benefit themselvles from the power of object-oriented techniques

Building languages out of dynamic, first-class objects encourages

 a highly reflective approach to architecture

A well chosen set of objects

can permit a language to encompass a variety

of different programming models and features

Object-oriented metalevel architectures can provide

a structural redoubt as existing system organizations

are rethought...

* 22 *

