
A META-LEVEL ARCHITECTURE FOR

PROTOTYPING OBJECT SYSTEMS

by

Jeff McAffer

A Dissertation

Submitted to

The Graduate School of

The University of Tokyo

in Partial Fulfillment of the Requirements

for the Degree of Doctor of Science

in Information Science

September 1995

©1995, Jeff McAffer

ABSTRACT

As applications become larger and more complex, it is frequently the case that system com-
ponents require varying models of computation. The use of different computational models is not
well supported by standard object-oriented mechanisms and systems. Typical mechanisms implic-
itly encapsulate meta-level (i.e., computational) semantics along with the base-level (i.e., domain)
behaviour. Objects defined using one model cannot easily be executed under another and so cannot
be reused. A major problem is the inclusion of base-level language constructs in the meta-level
architecture design. Meta-levels typically only facilitate concepts which are similar to those in
the original base-level language and so cannot describe widely differing models of execution. We
present a meta-level architecture founded on the novel principle of fine-grained, operational de-
composition of the meta-level into objects. Unlike others, our approach bases the design of the
architecture on the operations which occur during object execution (e.g., send, lookup) rather than
the structural nature of an object’s representation (e.g., class, method). This clearly separates the
elements of the meta-level from those of the base-level language and so opens the meta-level to
more radical change. The power of this approach is shown via several markedly different object
models and their combination and non-intrusive application to user code. We detail how computa-
tional domains are completely altered with almost no modification of the original application code
or its semantics. This capability is applied to real-world problems in object reuse, object behaviour
investigation and in novel application design. Detailed examples relating to distributed computing
and object communication are presented. It is shown that this approach to meta-level design is more
open and flexible, and better supports the application of common software engineering practices
(e.g., encapsulation and reuse) to the components of the meta-level — Properties desired by anyone
designing complex systems.

Contents

1 Introduction 1
1.1 Existing architectures. 3
1.2 Our approach. 6
1.3 Meta-level applications . 8
1.4 Contributions. 10

1.4.1 Conceptual contributions. 10
1.4.2 Practical contributions. 11

1.5 Overview. 12

2 Background 14
2.1 3-Lisp . 14
2.2 3-KRS . 15
2.3 CLOS . 15
2.4 ClassTalk. 16
2.5 ABCL/R2 . 16
2.6 AL-1/D . 16
2.7 RbCl . 17
2.8 Apertos. 18
2.9 OpenC++ . 18
2.10 Actalk . 18
2.11 Summary. 19

3 CodA 20
3.1 The CodA object system. 20
3.2 Operational decomposition into objects. 20
3.3 Meta-level decomposition. 22
3.4 Behaviours. 23

3.4.1 Send . 24
3.4.2 Accept . 24
3.4.3 Queue . 25
3.4.4 Receive . 25
3.4.5 Protocol . 26
3.4.6 Execution . 26

i

3.4.7 State . 27
3.5 Meta-level framework. 27

3.5.1 Object models. 29
3.5.2 Object model combination. 31

3.6 TheConcurrentObject model . 33
3.7 Abstraction, compression and expansion. 34
3.8 Summary. 35

4 Ported Objects 36
4.1 Meta-level design . 37

4.1.1 Send . 39
4.1.2 Accept . 39
4.1.3 Queue . 40
4.1.4 Receive . 40
4.1.5 Execution . 40
4.1.6 Example. 41

4.2 ApplyingPortedObjects . 41
4.3 Compound ported objects. 43
4.4 Summary. 44

5 Tj 46
5.1 Distributed system infrastructure. 47

5.1.1 Object spaces. 47
5.1.2 Remote references. 48

5.2 TheDistributedObject model . 49
5.2.1 Distributed object execution. 49
5.2.2 Marshaling. 50
5.2.3 Marshaling policies and optimization. 52

5.3 TheMigrantObject model. 54
5.3.1 Computational migration. 55
5.3.2 State migration. 56

5.4 TheReplicatedObject model . 56
5.4.1 Replication example. 57

5.5 Implementation . 60
5.6 Summary. 61

6 CodA implementation and use 63
6.1 Implementation strategy. 65
6.2 Per-object meta-levels. 66
6.3 Behaviours and meta-components. 70

6.3.1 Changing behaviours. 71
6.3.2 Adding behaviours. 72

6.4 Messaging. 72

ii

6.4.1 Message sending reification. 72
6.4.2 Message accumulators. 74
6.4.3 Debugging with messages. 75

6.5 Programming with CodA . 75
6.5.1 Code changes. 75
6.5.2 Optimization. 76

6.6 Summary. 77

7 Applications 79
7.1 N-Body . 79

7.1.1 Problem description. 79
7.1.2 Adding concurrency and distribution. 80
7.1.3 Changes to original code. 81
7.1.4 Experiments. 83
7.1.5 Summary . 86

7.2 Expert system. 86
7.2.1 Problem description. 86
7.2.2 Adding concurrency and distribution. 87
7.2.3 Changes to original code. 88
7.2.4 Experiments. 89
7.2.5 Summary . 90

7.3 Vibes. 91
7.3.1 Problem description. 91
7.3.2 Analysis framework. 92
7.3.3 Monitoring. 93
7.3.4 Summary . 94

8 Evaluation 96
8.1 Capability . 96

8.1.1 CodA . 98
8.1.2 CLOS MOP . 99
8.1.3 ABCL/R2 . 99
8.1.4 AL-1/D . 100
8.1.5 RbCl . 101
8.1.6 Apertos . 101

8.2 Performance. 102
8.2.1 Execution performance. 103
8.2.2 Performance perspective. 104

8.3 Summary. 105

9 Conclusions 106
9.1 Perspectives and future work. 107

A Default Meta-component code 113

iii

B Example code 115
B.1 N-Body . 115

B.1.1 Particle . 115
B.1.2 QuadTree . 116
B.1.3 Solver . 118
B.1.4 DistributedQuadTree . 119
B.1.5 DistributedSolver . 121
B.1.6 Invocations. 121

B.2 Expert system . 123
B.2.1 Annotations . 123
B.2.2 Additions . 126

iv

List of Figures

1.1 Receiver dependent message sending. 3
1.2 Retro-reification . 4
1.3 Receiver dependent sending implemented with methods. 5
1.4 Receiver dependent sending implemented with objects. 8
1.5 Project overview. 10

3.1 Sample meta-level configuration and interaction. 23
3.2 A standard class configuration. 30
3.3 Class object models. 30
3.4 Object model collision. 32
3.5 Meta-level behaviour compression and expansion. 34

4.1 ThePortedObject meta-level . 39
4.2 Correlation annotations. 42
4.3 Compound object example. 43
4.4 Compound object parameter handling. 44

5.1 RemoteReferences and the meta-level. 49
5.2 Distributed object layout. 58
5.3 The making of a replica. 59

6.1 Meta-level structure. 65
6.2 The CodA meta-level class hierarchy. 66
6.3 The object-identity problem. 67
6.4 Dynamic reification of themeta . 69
6.5 Implementation of the meta-level. 70

7.1 Messaging behaviour without replication. 84
7.2 Messaging behaviour with replication. 85
7.3 Overview ofENVY /Expert . 87
7.4 Example modified rule. 90
7.5 Overview of Vibes. 92
7.6 MonitoringSend activity . 95

B.1 N-Body application class hierarchy. 115

v

List of Tables

6.1 Message sending forms. 73

7.1 Summary of N-Body code changes and additions. 82
7.2 Summary of expert system changes and additions. 89

8.1 The relationship between meta-level architectures.. 97
8.2 Levels of support. 97
8.3 Mapping from AL-1/D to CodA.. 100
8.4 CodA/Tj performance . 103

vi

Acknowledgements

I would like to thank my supervisor, Professor Akinori Yonezawa for providing such a rich envi-
ronment of ideas, visitors and machines in which to work. Key in that environment was Satoshi
Matsuoka whose questions were always as incisive as his memory is vast.

I would not have been able to do this work if it were not for Dave Thomas and Brian Barry.
Their continuing moral, technical and financial support has been more than that for which any
person could hope.

Perhaps most importantly, I thank all the people who made the Yonezawa lab what it was during
my time there; Jean-Pierre Briot, my cohort and fellow Smalltalk evangelist. Jacques Garrigue and
Kentaro Torisawa, constant dinner companions, philosophical combatants and providers of much
needed sounding board technology. Kenjiro Taura, for lots of discussion and cheerfully answering
my endless stream of AP1000 and other questions. Hidehiko Masuhara for his thoughtful comments
and discussion and Naohito Sato for guiding me through the wilderness of TEX and Mathematica
and generally making life in the lab pleasant. And finally, all the other lab members (particularly
the systems managers) over the years.

Very special thanks go to all the people at Object Technology International who built much of
the technology I used in my work. You are an exceptional group of people and I am proud to be
associated with you.

Finally, I thank my friends and family around the world for being who they are and doing what
they do.

This work was supported in part by Object Technology International, the Japanese Ministry of
Education (Monbusho) and the Canadian Government’s Japan Science and Technology Fund.

Chapter 1

Introduction

With the widening acceptance of object-oriented design and computing, the demands placed on
software developers are changing. One of the promises of object-oriented computing is highly
modular and reusable packages of functionality (e.g., class libraries). The traditional strategy for
realizing this is theblack box. The black box view holds that, class libraries are opaque to the
user/client who does not need to see inside the box to solve their problems. In practice, this is not
always possible or desirable.

Consider someone wishing to migrate their existing applications from a uniprocessor environ-
ment to a distributed environment? Should they have to rewrite a large part of their system to
accommodate the change in computational models? The typical view of objects as encapsulators
of domain and computational behaviour says, “Yes, programmers must open the whole black box
to change part of it.”.

The more general issue is that library designers cannot know or guess all possible uses of the
classes they build. By enforcing the black box paradigm on our software modules, we are forcing
users to conform to the designer’s view of the world. This often requires them to leap through very
high hoops to do relatively simple things. In many cases we want to reuse and object’s semantics
but not necessarily its computational behaviour.

It may seem exotic to assume that objects will really be placed in such situations but as system
scope grows wider and deeper, the nature of the computational landscape changes. It becomes
more diverse and dynamic. Requirements for the same objects to run on mainframes, large-scale
multiprocessors, workstations, embedded controllers and personal digital assistants (PDAs) exist
today and the spectrum will only widen in the future.

Looking at the same problem from a different point of view we see that ideally, (sub)systems
are designed in whatever computing paradigm best suits their requirements. Unfortunately, what
is good for one part of a large or complex system may not be appropriate for another. Furthermore,
what is good at one point in time is not necessarily good at the next. Designers cannot accurately
predict the actual or best behaviour of their application elements when combined. For the most
part, they cannot even see a way to combine elements from radically different domains.

While many software development environments support the design and prototyping of an
object’s domain behaviour, in this new, larger scoped world, designers of both class libraries and
applications need support for designing their objects’computationalbehaviour. Unfortunately, the

1

CHAPTER 1. INTRODUCTION 2

computational behaviour of an object is generally hidden in the language environment or is defined
inside the object’s black box.

These situations lead to a requirement for an explicit representation of an object’s computational
model. Given this, interaction between objects using disparate styles is facilitated by interfacing the
computational models. Moreover, given a generalized framework for modeling these behaviours,
much of the work of their combination and interaction is eliminated. New models are created to
suit evolving demands.

The idea of separating implementation from semantics is not completely new. Theparame-
terizationavailable in systems like the Mach Virtual Memory manager [45] andannotations(or
pragmas) in languages like High Performance Fortran (HPF) are but two examples. Parameter-
ization allows users to adjust the implementation by changing tolerances or strategies within the
framework of a particular implementation. Annotations are used to change the implementation
strategy itself. Regardless of the approach, the key is a clear and explicit exposure of the compu-
tational concepts which is independent of domain semantics.

This is the goal of researchers in meta-level architectures and reflective computing. One of the
fundamental tenets of this work is that the so-calledbase-level (domain semantics) andmeta-level
(computational semantics) descriptions of an object are distinct but causally connected. They run
different code, have different environments and different subject matter, but changes at the meta-
level affect the execution of the base-level. The base-level defines the domain-specific behaviour
of the object while its meta-level defines the computational behaviour of the base-level. This causal
connection is what helps us maintain sanity in these systems and is the basis for the distinction
between the levels.

Many people have been unknowingly using this approach for years. Recently there have been
attempts to codify these ad hoc practices and the work in meta-level architectures and reflection.
The result is the emerging field ofopen implementations[32]. Open implementations trade-off
the clarity and simplicity of the black-box model and the freedom and flexibility of more open
but less protected systems. They allow designers to expose, in a controlled way, the underlying
implementation of their objects. The implementation can then be manipulated by the user to better
conform to their situation.

The general goals of an architecture for open implementation are:

Separation The implementation of an object must be explicitly exposed and clearly distinguished
from the object’s domain-specific behaviour description.

ExpressivenessThe expression of a wide range of computational behaviours must be supported.

Extensibility Unanticipated computing patterns must be facilitated and integrated in a seamless
way.

Programmability The architecture as a whole must follow and support standard software engi-
neering concepts such as frameworks and reuse. It must also limit its intrusion on both the
host environment and the base-level code.

Much of the work in meta-level architectures and reflection has gone into the base- and meta-
level separation. As a result, most architectures provide a clean and discernible interface between

CHAPTER 1. INTRODUCTION 3

the two levels while the remaining three goals are not completely supported. This is unfortunate
since meta-levels are potentially complex pieces of software. They could benefit greatly from the
inclusion of better engineering support.

1.1 Existing architectures

Building open meta-level architectures is particularly challenging because of the diversity of be-
haviours (e.g., kinds of message sending) we wish to describe while maintaining a uniform base-
level view of object behaviour (e.g., the existence of message sending in the system). Without the
support of sound software engineering techniques, the meta-level becomes confused and unman-
ageable. Base-level programmers may benefit from the architecture but meta-level programmers
will find it wanting.

Most of the current architectures are expressive and extensible but in restricted senses. The
main problem is that they reify only the physical concepts which exist in the base-level language
(e.g., classes, methods, slots, etc.). We call this atop-downapproach. The top-down approach has
a number of positive attributes. The restricted domain allows the meta-level programmer interface
and use-patterns to be simple, clear and well-defined. Implementations can take advantage of
this to make earlier, more efficient strategy choices resulting in performance improvements. The
overhead to programmers is reduced as much of the configuration and administration work is done
by the system.

Despite these benefits, top-down models also suffer due to their restriction. Their expressiveness
is limited to concepts which are in the original language system. Many do not provide facilities for
significant extension. Concepts or behaviours which are not in the original design cannot (easily)
be added. Consider the case shown in Figure 1.1 where an object wishes to vary its message passing
mechanism based on the identity or type of the message receiver. (See Section 4.3 for a real-world
instance of this problem.) In the figure, the code for objectSource sends thefoo message to the
objectsDest1 andDest2. foo messages sent toDest1 should be handled normally whilefoos sent
to Dest2 should be modified in some way to befoo++ messages.

Source

Dest1

Dest2

Dest1 foo.
Dest2 foo

foo

foo++

Figure 1.1: Receiver dependent message sending

The non-meta-level solution to this problem is to embed the desired behaviour in the base-level

CHAPTER 1. INTRODUCTION 4

program. This is approach restricts the reuse of the object in different situations. It also requires
considerable effort on the part of the programmer (to add the required control structures) and clutters
the domain code with behaviour code.

The meta-level approach is to implement the different sending mechanisms at the meta-level
and then implicitly or explicitly determine which to use from the base-level. Depending on the
architecture, this may or may not be easy. Many languages have only one notion of message
sending and their meta-levels do not provide any facilities for its modification — Message sending
is a given constant for that language. Languages and meta-level architectures such as the CLOS
MOP, Smalltalk and C++ are examples of this. Since message sending is not explicitly reified, the
best we can do is toretro-reify them.

An example of retro-reification is shown in Figure 1.2. Here we have the same message sending
situation as in the earlier example but nowSource’s andDest2’s meta-levels are shown. Note that
Dest1 is not relevant here and so is not shown. Retro-reification is implemented by observing
that message reception can always be reified simply by intercepting arriving messages. Taking
advantage of this,Dest2’s meta-level is modified to trapfoo messages and pass them back to the
sender’s meta-level for possible modification by its message sending operation.

Dest2
meta

Source
meta

Source
Dest2

Dest1 foo.
Dest2 foo

foo

foo++

modify
foo?

hook
foo

Figure 1.2: Retro-reification

When thefoo message arrives atDest2 it is trapped by the meta-level and passed back to
Source’s meta-level.Source’s meta-level checks the message and its receiver and determines that
a modification is required. Thefoo message is modified into thefoo++ message which is finally
passed toDest2.

While this approach works, it has a number of drawbacks in addition to begin somewhat indirect
and confusing. The first is that we must know all possible receivers offoo messages and modify
their meta-levels to retro-reify (i.e., trap) the sending of those messages. This incurs overhead on
all sends offoo regardless of whether or not modification is required. It also requires the ability
to describe instance-specific behaviour (i.e., modify justDest2’s behaviour). This is quite difficult
in systems like the CLOS MOP because the CLOS language implementation is based on method

CHAPTER 1. INTRODUCTION 5

invocations rather than message sends. The CLOS language model does not include facilities for
object-specific behaviour specification.

Retro-reification is an issue only where message sending is not explicitly reified by the system’s
meta-level. This is typical of non-concurrent systems which have no particular need for different
kinds of message sending. Concurrent systems on the other hand, typically provide reifications of
sending, in the form of a method on some meta-level object. This approach suffers from engineering
and scalability problems.

Figure 1.3 shows a typical meta-level with the send operation reified as methods. Note that the
send operation’s lasting state (if any) is maintained in instance slots of the metaobject itself. The
figure shows this approach applied to the message sending problem discussed above. The different
behaviours are implemented in different methods,send1 andsend2, on the metaobject.

Source

Dest1

Dest2Dest1 foo.
Dest2 foo

foo

add1

remove1

remove2

add2send2

send1

foo++

Source metaobject

Figure 1.3: Receiver dependent sending implemented with methods

While this approach works for small numbers of behaviours, it does not scale well. For example,
we see in Figure 1.3 thatsend1 andsend2 each have independent state vectors required to describe
their behaviour. Since the send operations are methods on some metaobject, these state vectors are
held in instance slots of the metaobject. As such, the methods for modifying and maintaining the
state vectors must also be added to the metaobject (e.g.,add1, remove2).

In addition to simple naming problems related to having many methods and slots with similar
purposes, there is the issue of duplicate code and behaviour management. In many cases the send
related methods are very similar or identical. The primary difference is in the values in the state
vectors they manipulate. As such, these methods (e.g.,add1 andadd2) are largely duplicate code.

Further, the maintenance and infrastructure methods are logically part of their related send
operation but are not physically represented as such. They are simply methods on some metaobject.

CHAPTER 1. INTRODUCTION 6

Manipulating operations as whole, consistent modules is not supported. All of these problems are
exacerbated when we consider that typical metaobjects describe several different operations (e.g.,
sending, receiving and queuing). Each of these has its own state vector and infrastructure methods.
Combining these on one (or a small number of) metaobject(s) makes the meta-level a cluttered and
confusing place.

Fundamentally,methodsare not suitable structures for describing meta-level operations. Meth-
ods simply do not provide the infrastructure and abstraction necessary for describing more than
very simple behaviours. They do not directly support reuse, combination or composition. They
are not suitable units of encapsulation for engineering the meta-level.

1.2 Our approach

Objects on the other hand do provide the necessary abstractions and infrastructure for describing
complex interactions. While objects are generally used in meta-level architectures, we claim
that their coarse-grained top-down application restricts the overall scope and usefulness of the
architecture.

In contrast, we take a fine-grainedbottom-upapproach. Rather than starting with and then
opening particular base-level language elements (e.g., classes), we start by describing the basic
elements of generic object behaviour (e.g,. message sending, state). We then provide infrastructure
for composing these behaviours into specific object models. This is very much related to basic
concepts in object-oriented software engineering — decompose a specific problem into generic
components and then compose the pieces to solve the problem. From this comes both a solution
to the problem and a set of components which can be used in other solutions.

Using the bottom-up approach we have developed CodA[27], a meta-level architecture capable
of describing a wide range of object behaviour models. CodA can be thought of as a generic object
engine framework in which users define, on a per-object or even per-use basis, how objects behave
computationally. Our approach is summarized in the following statement:

The CodA meta-level architecture is based on an operational decomposition of meta-
level behaviour into objects and the provision of a framework for managing the resul-
tant components.

This statement captures the architecture’s three major principles;operational decomposition,
decomposition into objectsandprovision of a framework. We claim that following these principles
in designing the meta-level is novel and that it leads us to a system which is more capable and
more expressive than existing systems. Furthermore, these principles directly support the general
meta-level design goals as set out above.

An operational decomposition is a factoring of the meta-level by operation (e.g., message
sending or method lookup) rather than physical entity or programming language element (e.g.,
evaluator or class). Each meta-level operation which occurs during the execution of an object is
treated as a separate element of the meta-level. The focus is on the dynamic rather than static
structure of the system. That is, on what occurs not how it is organized.

CHAPTER 1. INTRODUCTION 7

Typical decompositions seek to represent the physical structure of a system (e.g., how its
objects are defined and organized). As we saw with the message sending example above, this leads
to meta-levels in which we cannot easily express unanticipated dynamic behaviours. In addition,
by focusing on particular language elements, these architectures further limit their expressiveness.
For example, architectures which use only classes as the unit of object description do not admit the
description of prototype-based object behaviour. We can design an architecture which specifically
facilitates both classes and prototypes but then there will be some third notion which does not fit
either mold and so cannot be integrated.

By focusing on execution operations, we avoid these issues and get at the very essence of
an object — its executional semantics. All objects, regardless of their structure, configuration
and base-level semantics, reduce to the same common set of basic conceptual operations (i.e.,
primitives). The definitions of these operations may differ but if the operational concepts are
simple/basic enough, we can capture all elements of common languages.

It can be said that other systems reify the operational side of object behaviour because they
define meta-level methods which describe the operations. As we saw above, this approach is
severely flawed with respect to the engineering of the meta-level. We apply object encapsulation
to the meta-level in a bottom-up fashion. Each of these operational descriptions is individually
encapsulated in a distinct object at the meta-level. The result is a reification of object behaviour in
which each operation has clearly defined responsibilities and interfaces, and can exist in relative
independence of other operations.

This closely matches the needs of sound object-oriented software engineering practice: Factor
out common attributes, create objects for each factor and then compose these objects into appli-
cations. The only difference here is that our ‘applications’ are object models which describe the
behaviour of objects. That is, the meta-level is just an application whose domain happens to be the
behaviour1 of objects.

Applying this approach to the message sending problem above, we take the send method, its
associated state vector and maintenance methods and group them together in oneSend object as
shown in Figure 1.4. The definition of this operation is then instantiated multiple times and used
in different contexts and for different objects. The figure shows one instance of the same kind of
Send used to handle each of the sending behaviours forSource.

Unfortunately, the simple creation of fine-grained operational meta-level objects is not enough.
Larger-grained structural (i.e., traditional) decompositions provide users with abstractions which
closely match the concepts they manipulate while programming (e.g., classes, inheritance). While
beneficial for initial understanding and ease of use of the meta-level, this technique is not fully
extensible. New operations which span the responsibility borders of these implicit abstractions
or perhaps do not fall within the domain any existing abstraction, have no clear host object at
the meta-level. Such operations tend to be ‘tacked onto’ or ‘spread over’ somewhat inappropriate
meta-level objects.

The operational approach removes these abstractions to gain generality but in doing so, leaves
the programmer in a sea of meta-level objects with no organizational infrastructure. To take the
place of the implicit abstractions found in most systems, we add a generic framework for organizing

1We use the term ‘behaviour’ to denotehow an object acts as opposed towhat it does and so by nature,
‘behaviour’ is a meta-level concept.

CHAPTER 1. INTRODUCTION 8

Source

Dest1

Dest2Dest1 foo.
Dest2 foo

foo

Send1

add

remove

send

Send2

add

remove

send

foo++

Source meta-level

Figure 1.4: Receiver dependent sending implemented with objects

the meta-level. The most important feature of the framework is that it is free of semantics. It is
uniform. All operations are created equal and are treated the same way. There is no confusion or
ambiguity as to where operations are described or how they are managed. They are all hosted by
objects of their own and structurally managed by a distinct framework. Arbitrary extension is easy
because there are no semantics attached to the structure. Such frameworks are fast becoming a
standard object-oriented software engineering tool. We apply it here to managing object behaviour
at the meta-level.

Throughout this document we show that by following the three principles outlined above (i.e.,
(1) operational decomposition (2) into objects and (3) the provision of a framework), we can meet
our goals of creating an expressive, extensible and programmable environment in which to describe
an object’s computational behaviour as distinct from its domain behaviour. Furthermore, we show
that because this approach supports a wide range of object behaviours and can be closely integrated
with existing language systems, we can provide an environment for exploration and experimentation
in many behaviour domains.

1.3 Meta-level applications

Key to demonstrating the usefulness and expressiveness of our architecture are the descriptions
of several diverse object models, in particular, those related to communications (PortedObjects)
and distribution (DistributedObject, ReplicatedObject and MigrantObject). These models repre-
sent non-trivial changes to standard object behaviour and are motivated by real-world application

CHAPTER 1. INTRODUCTION 9

requirements.
The models related to distributed computing create an environment which equals dedicated

distributed languages in terms of sophistication but far outstrips them with respect to generality.
The distribution components and models are largely orthogonal to normal object computation and
so can be completely integrated with the underlying implementation environment in an seamless
way. Very few existing systems employ explicit meta-level architectures as the basis of their
system design. We claim that this approach, and primarily, the ability to change arbitrary objects
into distributed (e.g., replicated, migrated) objects without affecting their semantics, is a major step
forward in design and building of distributed systems. In addition to using these facilities for the
creation of a completely transparent distributed Smalltalk system,Tj, we demonstrate the benefits
of our approach both in the areas of behaviour investigation and execution domain changes.

Tj incorporates the full power of our meta-level architecture and adds distributed computing
specific mechanisms. The use of this general architecture is warranted because describing dis-
tributed object behaviour is more than just implementing remote references.Tj’s DistributedObject
model contains comprehensive notions of object spaces, machines, topologies, remote references
and object marshaling. Further models describe replicated and migratory objects. These mech-
anisms are implemented in an open and extensible way so as to accommodate user changes and
additions. The mechanisms themselves are reified as meta-level components and provide a place
to define both their implementation and their use (i.e., policies).

To be able to effectively investigate object behaviour we must be able to view and modify
application object implementations. The provision of an explicit meta-level decomposed opera-
tionally clearly and decisively separates the base-level semantics from the meta-level operations
and policies. As a result, application behaviour can be changed with very little impact on base-level
code and semantics. We present an N-Body problem solver application to demonstrate how this is
done and show how effective a tool this technique can be.

In addition to behaviour investigation, there is also a large demand for computational domain
changes or adaptation. For example, many people have large bodies of code (e.g., class libraries)
which are targeted at a particular execution environment or architecture (e.g., sequential, uni-
processor). The spread of distributed and multiprocessor machines call this restriction into question.
Application builders would like to be able to effectively reuse their class libraries in these new
environments without major changes to the original code. The transparency and integration of CodA
andTj enables this. We show that applications written for single processor (i.e., non-distributed)
environments can be modified to run in distributed environments with almost no disruption of the
application itself.

In a different vein, work withPortedObjects (see Chapter 4) and the Vibes application (see
Section 7.3) demonstrates the building of an application which is based on the capabilities of an
advanced meta-level architecture. The Vibes problem domain, data analysis, is best served by a
dataflow architecture but the desired generality of analysis techniques motivates us to allow the
use of generic objects in the analysis graph. The tension between these two demands is broken
by enabling the modification, at the meta-level, of arbitrary objects to have dataflow, orported,
behaviour. Using this facility, we design and build an analysis system in which analysts compose
everyday (and special-purpose) objects to create specific analysis systems. This gives Vibes a
major advantage over dedicated analysis systems in which analysts must explicitly program analysis

CHAPTER 1. INTRODUCTION 10

objects rather than simply reusing existing libraries.
Such power is a direct result of our architecture’s explicit reification of object computational

semantics separate from base-level semantics which is in turn facilitated by our unique approach to
meta-level factoring — operational decomposition. The operational approach is shown to produce
a clearer separation of, and a wider scope for, behaviour description.

Expert
System

Vibes

N-Body

...
Applications

Meta

CodAObject

MetaComponent

Infrastructure

DistributedObjects

classes

PortedObjects

ConcurrentObjects

...

Object Models

Migration

Marshaling

Accept

Queue

Send

Protocol

Receive

State

Execution

Replication

...

BehavioursArchitecture

Figure 1.5: Project overview

An overview of CodA,Tj and the developed object models and applications is shown in Fig-
ure 1.5. On the far left are the fundamental building blocks of our system — Abstract reifications
of the main meta-level concepts and the infrastructure for performing meta-level operations. Using
this framework we developed a number of meta-components, some optional, some required, which
realize our operational decomposition of the meta-level. These components are combined into
object models, or coherent definitions of object behaviour. Finally, using the developed frame-
work, components and models, we demonstrate the capabilities and expressiveness of the system
by implementing or modifying the behaviour of various real applications.

1.4 Contributions

The main contributions of our work come in two broad categories; conceptual and practical. The
conceptual contributions add ideas to the base of meta-level architecture theory while the practical
contributions add experience to the current practice in employing meta-level architectures. The
contributions in both areas are outlined below.

1.4.1 Conceptual contributions

Fine-grained operational decomposition into objects
CodA employs a novel strategy for structuring the meta-level; operational decomposition.
Most other systems use a structural approach which results in larger-grained meta-levels
which are closely tied to the base-levels they represent. In CodA, meta-leveloperations

CHAPTER 1. INTRODUCTION 11

are abstracted into concrete objects. These components are fully independent fine-grained
objects with clearly defined interfaces and properties. They support composition, reuse and
other common software engineering concepts.

Framework for extension
The CodA architecture contains a generic framework for managing the components of the
meta-level. This infrastructure is independent of the behaviours being described. It is fully
extensible. Additional components can be added and existing components can be modified
or have their implementations combined. Other systems have either no real framework or a
specific architecture which admits only certain kinds of behaviour description.

Meta-level engineering
The framework for behaviour extension scales up to the combination of entire object models.
Object models abstract higher-level behavioural concepts from the lower-level operations
which are the foundation of the architecture. Object models are constructed by the spec-
ification of constraints on relevant behaviours. Models are combined by merging these
constraints. This approach inherently supports; the easier identification of points of con-
flict between models, isolation of the effects of changing individual behaviours, increased
reusability of components derived from the combination of object models and easier/explicit
management of the behaviour space.

Complete integration with a standard programming language/environment
We have implemented CodA in, and integrated it with, a standard, industrial quality Smalltalk
system. Though the CodA architecture itself is independent of any particular language fea-
tures, the Smalltalk implementation matches closely the underlying object system and virtual
machine. Users retain all of the power of the Smalltalk programming environment (e.g.,
classes, browsers, inspectors, debuggers) and gain the ability to modify object behaviour on
a per-use, per-object, per-class or global basis. Virtually any Smalltalk object can be manip-
ulated in this way. CodA modifications to meta-level behaviour descriptions are transparent
to users of the modified objects to the point where most of the environment’s some 1,000
classes and 6,000 methods continue to work unchanged.

The implementation of CodA in Smalltalk has given rise to a number of novel implementation
techniques. In particular, we have solved theobject-identityproblem common in systems
which attempt to extend Smalltalk runtime semantics. Novel mechanisms for prototype-
based computing,futuresand dynamic message reification where also developed.

Using the architecture and developed object models, CodA has been adapted to run in dis-
tributed environment such as clusters of workstations and MPP computers such as the Fujitsu
AP1000[38]. Implicit in this is that we have developed the first industrial grade Smalltalk to
run on MPP class machines.

1.4.2 Practical contributions

Concrete examples of meta-level use
Our work gives concrete justification for and examples of meta-level use in both object model

CHAPTER 1. INTRODUCTION 12

and application design and prototyping. We present several quite different models of object
behaviour which demonstrate the power of using full scale meta-level architectures.

For example,Tj contains distributed object models which rival the capabilities of existing
dedicated distributed systems such as Emerald [22]. It supports replication, migration, a
sophisticated object marshaling framework and a wide variety of messaging types in a way
which is transparent to the base-level and uniformly applied across the whole system. This
is only possible with a general architecture as CodA.

We also apply these ideas to several non-trivial applications including the entire Smalltalk
system in which CodA is implemented and a commercial expert system tool which is modified
to be both concurrent and distributed (see Section 7.2). We show that using an explicit meta-
level, such changes can be done with relatively minor modifications to the base-level objects
of the original system.

Environment for exploration
Perhaps one of the most significant contributions of this work is the cumulative effect of
all these contributions gathered together into one system. Overall, CodA provides an open,
powerful and expressive software development environment for exploring and experiment-
ing with object behaviours. The architecture is based on sound object-oriented software
engineering practice and its implementation is completely integrated with a powerful pro-
gramming environment (Smalltalk). Moreover, the environment as a whole is transparent to
the user allowing full reuse of existing class libraries where applicable.

1.5 Overview

The remainder of the this thesis is organized into eight chapters and a series of appendices. Fol-
lowing immediately is a discussion of background material and related work. In this chapter we
highlight positive and negative points of past work and the general directions in which our goals
and efforts differ.

Chapter 3 presents the CodA architecture, in particular, our approach to meta-level factoring.
Object models, our mechanism for abstracting object behaviour, is detailed along with an educa-
tional example, theConcurrentObject model. Further sections discuss techniques for managing
and merging abstract descriptions of meta-level behaviour.

A detailed example of how CodA is used is presented in Chapter 4. This chapter presents
thePortedObject model for dataflow style computing. ThePortedObject model demonstrates the
creation of radically new paradigms through the modification of existing object behaviours.

Chapter 5 describesTj, a distributed object system built using CodA.Tj’s object models are
examples of how entirely new behaviours added to objects.Tj augments all objects from the under-
lying environment with distributed computing operations such as remote referencing/messaging,
marshaling, migration and replication. Distribution is completely integrated and transparent. Our
discussion deals mostly with distributed computing mechanisms such as replication and their de-
sign using the CodA architecture. Topics such as applications and performance issues are left to
further chapters.

CHAPTER 1. INTRODUCTION 13

Chapter 6 details the implementation and use of CodA in the Smalltalk object-oriented envi-
ronment. CodA is integrated with Smalltalk and allows CodA and Smalltalk objects to interact and
inter-operate. This chapter gives a number of concrete programming examples and insights into
the mechanisms used to support the architecture.

CodA and some of the object models we have designed are combined and applied to a set
of three problems in Chapter 7. The first application is a relatively regular N-Body problem
solver. The application is adapted to be concurrent and distributed, and the use of CodA as a
behaviour/performance investigation platform is demonstrated. The next application is the addition
of concurrency and distribution to a commercial expert system tool. Here we show the transparency,
integration and non-intrusiveness of our architecture. Finally we present a behaviour analysis
application which makes extensive use of the CodA meta-level both for data gathering and analysis.

Chapter 8 evaluates the capabilities CodA relative to a representative set of existing architec-
tures. The analysis focuses on CodA’s success (or failure) in meeting the goals and objectives
set out above. We also discuss CodA’s performance in absolute terms to show that it is usable in
addressing real issues in application and behaviour design.

A final chapter summarizes our research and relates the goals and approach to the results. We
also discuss some possible routes of future work. A series of appendices provide readers with a
more detailed view of CodA andTj, their implementation and use.

Chapter 2

Background

The area of meta-level architectures, reflective computing and open implementations has received
considerable attention of late. While most of the systems related to our work have differed either
in focus or approach, they have all achieved their goals by opening or exposing the implementation
of fundamental system components. Regardless of what behaviours they describe and how they
are described, by accessing and manipulating the exposed interfaces, users modify and control the
environment in which their objects live and execute. The net result of that is the ability to adapt
objects to different and changing computational environments.

2.1 3-Lisp

The area of reflective computing and meta-level architectures really began with Brian Smith and
Jim des Rivieres’s work on 3-Lisp [11, 40]. 3-Lisp is a sequential Lisp which incorporates a meta-
circular interpreter and the ability tolevel shift. Level shifting is typically done via areflective
procedurecall and allows, for example, base-level programs to shift to the meta-level and carry
out some reflective computation. The computation at the meta-level is carried out by an interpreter
which is logically distinct from that of the base-level. Level shifting is a uniform operation appli-
cable to any level (e.g., meta-level to meta-meta-level) giving rise to a logicallyinfinite towerof
levels or interpreters.

3-Lisp explicitly reifies code, the execution environment and the current continuation giving
meta-level programmers access to all the vital elements of Lisp execution. New language or system
constructs are added by modifying or reimplementing the interpreter for a given level (i.e., the level’s
meta-level).

This model captures the fundamentals of reflective computing and meta-level architectures.
It is however, closely tied to the Lisp model of computing. It does not address issues specific to
object-oriented computing and the framework it provides for meta-level modification and extension
is relatively unsophisticated.

14

CHAPTER 2. BACKGROUND 15

2.2 3-KRS

Carrying on from the 3-Lisp work, Patti Maes developed 3-KRS[24]. The 3-KRS language is
object-based and its meta-level was one of the first to be object-based. The 3-KRS meta-level, rather
than being a meta-circular interpreter, is represented by a series ofmetaobjects. Level shifting is
uniformly integrated into the language model using standard message sending operations. That is,
a level shift is just a message send to, or invocation of, a metaobject. Other than open the possibility
of using standard object-oriented software development techniques, 3-KRS does not provide any
additional infrastructure for managing the meta-level. Nor does it prescribe a particular architecture
for the meta-level.

2.3 CLOS

The CLOS Metaobject Protocol (MOP) [23] came about as an attempt to unify several disparate
object models implemented in Lisp. The basic approach was to identify and reify those parts of the
various systems which were essential to defining their behaviour. By generalizing, abstracting and
finally combining these behaviours at the meta-level, a unifying framework was produced. The
architecture has six kinds of objects at the meta-level; classes, slots, generic functions, methods,
specializers and method combinations.

This model does an excellent job of reifying, in objects, the structural nature of CLOS language.
That is, the metaobjects (e.g., classes, slots, etc.) are derived directly from structures that program-
mers write or define when using the base-level language. It does not however, reify its operational
concepts. Operations like message sending and method lookup are represented by methods on the
appropriate metaobject. This approach is not inherently bad but it is different from the approach
we have taken with CodA (see Section 3).

The CLOS MOP’s provides a strong basis for the modification of existing language constructs
but does not support a framework for the addition of new concepts which are not part of the existing
model. Of course, since it is an open architecture, new concepts can be added but there is no
generalized infrastructure for doing this. Similarly, the MOP, while implemented with objects, is
notoriented towards objects. That is, it is difficult to modify the behaviour of individual objects.

Consider a user wanting to count all invocations of methodfoo for some objectO. A first
cut at this is to implement a new kind of method metaobject which counts invocations and insert
this into the generic method chain for the selectorfoo for objects ofO ’s class. Unfortunately, this
affects all instances ofO ’s class and its subclasses (who do not redefinefoo) — the count will not
be just forO. To get around this, the counting method metaobject must also maintain a list of
objects for which it is counting and check the receiver against the list for every invocation. While
this solution works, it introduces overhead in unrelated objects and does not scale to handle many
different behaviours for many different objects.

CHAPTER 2. BACKGROUND 16

2.4 ClassTalk

ClassTalk[8, 10] is somewhat like CLOS in that it is a reification of an existing object model.
ClassTalk opens structural aspects of the Smalltalk language environment. In particular, the meta-
class structure. This allows users to explicitly program metaclasses and thus modify the meta-level
(i.e., the class) of an object.. It also opens a number of other system operations such as method
lookup and execution.

This is not a fully general system however. Like CLOS, ClassTalk is a useful system within its
language environment but it does not open widely the world of objects. Behaviours having to do
with individual object execution are not addressed nor are operational mechanisms such as message
sending.

2.5 ABCL/R2

The ABCL/R2 [25] was one of the first systems to introduce meta-level computing for concurrent
objects. In doing this it reifies the concept of computing power and allows it to be manipulated
by users. ABCL/R2 uses agroup-wideapproach to organizing and scheduling concurrent objects.
Objects within a group share computing resources and can be manipulated as a whole by controlling
the group itself. Groups are meta-level concepts.

The ABCL/R2 meta-level takes the interpreter approach of traditional systems like 3-Lisp.
That is, the meta-level is basically a meta-circular interpreter. Shifting to the meta-level causes
(logically) another interpreter to be created and invoked to interpret the meta-level to which you
just shifted. Inherent in this approach is the idea of complete meta-level reification. If we wish to
change just one aspect of an object’s behaviour, we must, at least logically, reimplement its entire
interpreter. This is in contrast to the approach taken in RbCl and Apertos (and in fact our work)
where only those portions of the meta-level actually changed are reified.

Since every meta-level is a complete (logical) reimplementation of the interpreter, there is no
need for a framework to organize the meta-level. The organization can be left up to the interpreter’s
implementor. This discourages object behaviour description reuse by making it difficult to integrate
unrelated or third-party behaviours.

2.6 AL-1/D

AL-1/D[34, 33] is an application of AL-1’s Multi-Model Reflection Framework (MMRF) [21, 20]
to distributed systems. Within this architecture, an object’s meta-level is partitioned into a fixed set
of six modelsor views of base-level object behaviour. Below we summarize the parts of base-level
object behaviour described within each of these models.

Operation Describes the operational semantics related to the programming language. Concepts
such as message sending, state storage and stack manipulation are detailed here.

Resource Represents shared system resources such as CPU and memory.

CHAPTER 2. BACKGROUND 17

Statistics Maintains various statistics for various aspects of object behaviour (e.g., CPU time,
memory usage, blocking, etc.).

Distributed Environment (DE) Models the distributed system in terms of topology, networks,
CPU and communications channel loadings, etc. Also maintains a global name server for
object-to-location resolution.

Migration Defines how an object moves from one host to another and what objects are moved
with it.

System Specifies the primitive system operations on which the entire system is built.

Overall this partitioning appears to reflect implementation issues rather than design issues.
This is useful but ultimately leads to problems and confusion. Behaviours one might expect to see
together, are split over meta-models (e.g., object monitoring and migration behaviour).

The partitioning is also relatively coarse-grained. One model, Operation, describes almost all
of an object’s execution behaviour. This is closely tied to the base-level language and does not
serve as a sound basis for behaviour reuse or combination.

The logical weightof the models is notbalanced. While the Operation model defines a great
deal of behaviour, the Statistics model is just a storage area for monitored values. These are grossly
different in complexity, scope and significance. While it may be convenient to have system statistics
grouped in one place, this would not seem to be sufficient motivation for an entire model.

The details of moving an object from one place to another are split over several models (DE and
Migration) rather than being one logical unit. The Migration model is billed as an OS abstraction
but it includes specification of things like object attachment and slot inclusion which would seem to
be higher level issues. The DE model, in addition to specifying argument passing strategies (e.g.,
call-by-move), deals with completely unrelated issues such as object name/location mapping and
processor loading.

2.7 RbCl

RbCl [19, 18] is a reflective concurrent language system in which the meta-level is factored into
objects. Metaobjects with different implementations (in different languages) can be plugged in
and used as long as they understand the calling conventions. This is demonstrated with the free
substitution of RbCl and C++ objects. Unfortunately, very little is said about what objects exist at
the meta-level and how they interact.

The authors claim that RbCl iskernel-less. The essence of this claim is that every function
point in the description of object behaviour (i.e., the meta-level) can be reimplemented by the user.
As such, there is no fixed kernel. This is a nice idea as it gives the user complete power over the
system but with no framework or infrastructure organizing the meta-level, this power is hard to
manage.

RbCl is also set apart from other systems in that it reifies many of the low-level system operations
like scheduling, interprocessor messaging device interfaces, etc. Though there could be more at
the higher end, it has a reasonable span from system- to object-level behaviour descriptions.

CHAPTER 2. BACKGROUND 18

2.8 Apertos

Apertos[43, 44] is an object-oriented operating system. As such, the objects it deals with are things
like schedulers, virtual memory servers and device drivers. Even though this differs from our
domain, the Apertos’ meta-level architecture is of interest to us. The Apertos meta-level is reified
in to metaobjects which are grouped intometaspaces. Metaspaces are structural concepts which
have no real meaning at runtime. They can be arranged in a hierarchy similar to classes and are
used to describe relatively complete sets of behaviour.

An Apertos object’s behaviour is defined by the metaspace(s) in which it resides. To change
its behaviour, we move if to a new metaspace. Any number of objects can reside in the same
metaspace at the same time. Though Apertos does not reify many higher-level object behaviour
concepts such as message handling (e.g., lookup) and state storage format (e.g., slot structure), in
later chapters we will see that its fundamental architecture has much in common with our work.

2.9 OpenC++

OpenC++[9] is a static or compile-time meta-level architecture which allows users to modify the
implementation of their objects. OpenC++ metaobjects represent C++ language elements and are
produced when an OpenC++ program is parsed. Which metaobjects are created is controlled by
meta-level directives or annotations made by the user. The language system has a small framework
for annotating code to allow generalized annotations to be used. Once the code is parsed, the
metaobjects, which essentially form a parse tree, are asked to produce code which implements the
behaviour they describe. So, by using annotations to control metaobject creation, users can control
the implementation of language constructs.

This system is interesting but is not fundamentally different from current object-oriented com-
piler technology seen in languages like Smalltalk. Having said that, we find we would like a similar
system for optimizing out many of the runtime meta-level operations in our system.

2.10 Actalk

Actalk [7] is a meta-level architecture implemented in Smalltalk. It introduces actor-based concur-
rent objects to an otherwise passive object environment using meta-level manipulation. Its main
goal is to provide a testbed for describing object behaviours in areas relating primarily to concurrent
execution and message passing.

The system itself has become more and more component-based at the meta-level, but the basic
architecture has remained somewhat monolithic and code-based. There are however, many object
behaviours implemented in Actalk (e.g., intra-object synchronization constraints) which we look
forward to implementing in CodA.

CHAPTER 2. BACKGROUND 19

2.11 Summary

Each of these systems is a powerful tool within a particular domain. By in large, they were created as
reifications of specific, pre-existing systems in an effort to open their implementation and facilitate
user input. The way in which this has been done varies widely from system to system. The
approaches used are typically not compatible with one another and the object descriptions from
one architecture do not easily map onto a different architecture. In our work we strive to unify
aspects of various existing systems and enable users to create and use object models from various
domains within the same environment.

Chapter 3

CodA

3.1 The CodA object system

In creating the CodA architecture we developed a relatively generic model of objects. This model
forms a basis from which most other object systems can be constructed. The CodA base-level
object system contains the following three concepts:

State Each object has associated with it a set ofslotsinto which it can store and from which it can
retrieve other objects. These slots are for the exclusive use of their owner.

Execution Each object has associated with it a set ofmethodswhich it can execute. These methods
can access state and sent messages.

Message passingEvery object has the capacity to send a message to another object. All method
executions are the consequence of a message send.

The CodA object system is apure object system. That is, it has no elements which are not
objects. Additionally, CodA is run-time oriented. Rather than providing integral support for
language constructs like classes, inheritance or delegation required for the static description of
objects, CodA borrows these constructs from whatever language is used in its implementation.

This is in contrast to the meta-level facilities found in systems like CLOS[23] and ClassTalk[8,
10]. The focus of these systems is to open or extend the functionality of particular language
facilities or constructs. As such, they deal with somewhat more static issues and it is natural that
their capabilities and constructs be language specific. While CodA is perhaps ‘lower-level’ than
other systems, this approach allows us to gain a certain measure of language independence while
retaining the potential of the architecture.

3.2 Operational decomposition into objects

In Chapter 1 we motivated our choice of meta-level decomposition into objects in terms of the
goals for our system. This section makes concrete our claims and design. The CodA meta-level

20

CHAPTER 3. CODA 21

is factored according to the operations required during the execution of an an object. Each of
the factored operations (behaviours), is reified by an object (meta-component). Meta-components
provide specific definitions or implementations of the behaviours they describe. Typical behaviours
are concepts such as; object execution (both mechanisms and resources), message passing, message
to method mapping and object state maintenance.

While logically the behaviours are distinct, in an implementation a single component may
describe several behaviours. An object’s characteristics are changed by explicitly redefining or
changing the components which describe its behaviours or by extending its set of behaviours. A
system may contain many different components for the same behaviour but only one can be used
on a particular object at a particular time. It is also possible for objects to share components.

This approach to defining the meta-level has several distinct advantages over that found in other
systems. One common approach is to create public interface methods on a small number of meta-
level objects [25, 19, 23]). The design of these objects is often based on structural concepts found
in the programming language used for the system. For example, the CLOS MOP’s metaobjects
are things like classes, methods and slots. These concepts relate to how objects are described by
users, not how they are run by computers. This relates back to our discussion of bottom-up versus
top-down approaches in Chapter 1. While the top-down approach is convenient for reifying existing
or predicted behaviour, it does not lay a sound framework for the description of new and arbitrary
behaviour.

A structural architecture forces an object’s operational behaviour to be reified as meta-level
code rather than objects. Changes to a behaviour are made by modifying the related interface
methods on perhaps several metaobjects. Unfortunately, code is inherently more difficult to deal
with than objects and is not a good unit of software engineering. While code is often represented
as method objects, these objects have little support or infrastructure for interaction, change or
extension. Without this, describing complex interactions between several behaviours (i.e., groups
of interface methods) is confusing. Behaviours are not encapsulated into atomic units and overall
responsibility for a behaviour description is not clear. Unanticipated behaviours have no clear home
for their description and/or state.

Decomposition of operational behaviour into objects gives us a higher-level view of object
execution. Objects abstract code, define points of interaction and ease integration. They remove
us from the details of implementations and allow us to concentrate on design. The operational
approach results inherently in fine-grained objects. The advantages of this are highlighted in
various parts of the system (e.g., object model combination).

Objects also provide a wider interface for the behaviours (i.e., operations) they define. While
the execution-related interface of a behaviour may only contain a handful of methods, there may
be a large number of support and configuration interfaces. Similarly for state. If behaviours were
to share host objects as in other systems, these methods and slots would collide with those of other
behaviours and be confused with structural code, hiding the real semantics of the system.

We apply this strategy of operational decomposition into objects to the CodA object system
discussed in Section 3.1 by looking at the events which occur during the execution of objects. Each
of these events is mapped onto an operation. Each operation is considered to be a behaviour with
a meta-component to give its description. Since the decomposition is based on these operations, it
is termed anoperational decomposition.

CHAPTER 3. CODA 22

In certain cases (e.g.,State) two very closely related operations (e.g., slot value setting and
getting) were merged into one behaviour. Regardless, the result is a fine-grained decomposition
of the basic CodA object system which consists of seven components default behaviours;Send,
Accept, Queue, Receive, Protocol, Execution andState.

The next section gives an example of how a meta-level is decomposed according to our strategy.
Following that, Section 3.4 gives a detailed description of each of the seven default behaviours and
its prescribed execution interface. Further sections describe how the components which define these
behaviours are managed. A final section sets out a simple but instructive example of modifications
to several behaviours to effect a coherent object model.

3.3 Meta-level decomposition

Above we noted that the default CodA meta-level is decomposed into seven different components,
one for each execution-time object operation. The number ‘seven’, or more precisely, the actual
seven components were determined by analyzing the execution events which occur during normal
object execution in a number of different object systems.

It was found that all object systems reduced to a fundamental set ofprimitiveoperations which
could not be usefully decomposed. We converted each operation into an explicit object at the
meta-level (e.g., a meta-component). In some objects systems, some operations are trivial or not
even explicitly represented. Regardless, the CodA architecture gives these operations an explicit
description. For particular object systems and operations (e.g., queuing for non-concurrent ob-
ject systems) the operation is optimized away in the implementation but a representation of this
behaviour exists in the meta-level.

We do not claim that our decomposition is the only one possible but do claim that it is a
powerful and effective decomposition. Further, the architecture is such that if users wish to change
the granularity of the decomposition, they are free to do so. A later section (Section 3.7) details
how this is done. The architecture is also extensible in that completely new behaviours can be
added without affecting those which already exist.

The default decomposition forms a very basic model of object execution. Figure 3.1 depicts the
events, meta-components and interactions required to effect all aspects of this model. In the figure,
some objectA is sending a messageM to objectB (as indicated by the heavy dashed arrow). The
shaded areas contain meta-components. Each light arrow is an interaction event (dashed forA’s
execution thread, solid forB ’s). The heavy solid arrows indicate the base/meta relationship and go
from base-level to meta-level. Only those meta-components relevant to this particular interaction
are labeled.

The figure shows thatA sendsM by interacting with it’sSend, invoking itssend: interface
(1). Note that for brevity thefor: portion of the component interfaces has been omitted from the
diagram. TheSend communicates withB ’s Accept (2) and transfersM. TheAccept queue:’s the
message with theQueue (3).

Since the message is queued withB, the calling thread (i.e.,A’s) can return along the call chain
over which it came. If the message is synchronous thenA’s Send blocks the thread pending a reply
from B. If it is asynchronous, the thread returns toA’s base-level code and continues running.

CHAPTER 3. CODA 23

Send
Accept

Protocol

State

Queue

Execution

Receive

A B

Figure 3.1: Sample meta-level configuration and interaction

At some point, perhaps in the past,B will execute areceive: operation which invokes the
Receive (4) and attempts to fetch the next message from theQueue (5). Assuming that a blocking
receive was used,B ’s thread will block in theQueue until a message is available. When one is,
it is removed from theQueue and returned via theReceive. The normal behaviour at this point is
to find amethodFor: the message using theProtocol (6). Once a method is found it isexecute:d
by theExecution (7). During the execution of the method, the receiver’s (B ’s) state slots may be
accessed via itsState component (8).

3.4 Behaviours

Below, each of the default CodA behaviours is described and its operational (i.e., execution-time)
interface specified. Interfaces required for configuration and infrastructure are not included as they
will vary depending on the capabilities or properties of components and the actual implementation
environment. All specifications are presented in terms of the Smalltalk implementation detailed in
Chapter 6. The code for the default meta-components which implement these behaviours is given
in Appendix A.

Note that throughout the interface, the base-object (typically referred to asbase) is explicitly
specified as an argument. This is done for two main reasons; it allows for meta-components which
have a one-to-many relationship with the base-level and it removes the requirement for implicit
assumptions regarding the behaviour and arguments associated with an interface. For example, it
may not be the case that thesenderfield of a message being sent is actually the object doing the
send operation. As a general rule, if the meta-component implementing a behaviour maintains a
one-to-one relationship to the base-level (e.g., in a state variable) then thebase argument is ignored.

CHAPTER 3. CODA 24

3.4.1 Send

A Send’s main role is to manage the potentially complex series of interactions between message
sender and receiver ensuring proper transmission and synchronization. This includes protocol
negotiation, synchronization and resource management. For example, when sending a synchronous
message, the sender’sSend must inform the receiver that a completion signal (e.g., reply) is required,
how and to where the signal is to be transmitted, and also block the sender until the completion
signal is received. ThePortedObject model discussed in Chapter 4 contains aSend behaviour
which diverges substantially from the default model.

By default there are three different kinds of message sending: synchronous, asynchronous and
future. These are realized as different protocols. Variations on themessage argument introduce
orthogonal concepts such as; express and system messages.Sends also explicitly support the
transmission of reply messages as their requirements may be different from that of other message
sends.

An object’sSend is accessed usinganObject meta send{:}. It invokes the message receiver’s
Accept and responds to the following messages:

send: message for: base Sendmessage for base. Defines the default sending behaviour and is
typically, though not necessarily, mapped to one of the send operations given below.

send{Async/Sync/Future}: message for: base Sendmessage for base. The sender and receiver
are synchronized according to the specified mode (i.e., Async, Sync or Future).

reply: result to: message for: base Replyresult to the reply destination listed inmessage for base.
Replies are normal messages but may need to be treated differently to facilitate synchroniza-
tion and other schemes.

3.4.2 Accept

Accepts define the receiver side of the message passing protocol negotiation and synchronization.
They are also responsible for determining if a message is valid and how it should be handled
(e.g., queued, processed immediately). Note thatacceptinga message is different fromreceiving
a message. Acceptance concerns the interaction between the sender and receiver, while receiving
is the internal act by the receiver, of choosing a message for processing.

An object’sAccept is accessed usinganObject meta accept{:}. It is invoked by the message
sender’sSend, invokes the message receiver’sQueue and responds to the following messages:

accept: message for: base Determine ifmessage can be accepted bybase. To accept a message
is to promise to consider performing computation based on its contents. It is not an implicit
guarantee that the message will be processed but rather that the message has arrived at the
destination. The act of accepting a message also involves a preliminary determination of
what is to be done with the message. For example, if the message is marked asexpressthen
it should be considered for immediate execution.

acceptReply: message for: base Replies are normal messages but may need to be treated specially
to facilitate synchronization and other schemes.

CHAPTER 3. CODA 25

3.4.3 Queue

Queuing is the main mechanism of decoupling the execution of message senders and message
receivers. Messages which have been accepted but cannot yet be processed must be queued. Once
queued, the message’s sender can be released to continue executing if the message’s protocol allows.
There are a great variety of possible queuing policies using a variety of factors to determine in which
queue a message should be stored (e.g., by sender or type) and the message’s place in that queue
(e.g., FIFO, priority). These policies and factors are generally established via setup parameters
on theQueue. TheQueue protocol supports methods for enqueuing and dequeuing messages and
various forms of message retrieval.

An object’sQueue is accessed usinganObject meta queue{:}. It is invoked by the message
receiver’sAccept and by an object’sReceive and responds to the following messages:

dequeue: message for: base Removemessage from the receiver.

enqueue: message for: base Add message to the receiver.

nextFor: base Remove and answer the next available message from the receiver. This defines the
default dequeuing behaviour and is typically, though not necessarily, mapped to one of the
next operations given below.

blockingNextFor: base Remove and answer the next available message from the receiver. An
answer is not given until a message is available.

nonBlockingNextFor: base Remove and answer the next available message ornil if none is available.
An answer is always returned immediately.

nextSatisfying: constraints for: base Remove and answer the next available message from the re-
ceiver which satisfies theconstraints. An answer is not given until such a message is available.

peekFor: base Answer the next available message from the queue ornil if none are available. No
messages are removed from the receiver. An answer is always returned immediately.

3.4.4 Receive

As noted above, receiving and accepting are different operations. Receiving refers to the actual
fetching of the next message for execution. In other words, whileAccepts are concerned with how
objects synchronize and interact with each other (i.e., inter-object synchronization),Receives deal
with intra-object synchronization. When aReceive is asked for the next message to process, it
may consider many different physical queues and consult various constraint specifications before
determining the next appropriate message. ThePortedObject model discussed in section 5 details
an example of such a situation.

Note that many architectures implicitly combine the operations ofAccept, Queue andReceive
into the same object with quite a narrow interface. As such, the implementation or integration of a
new scheme for one of these behaviours necessarily impinges on the others. Making them explicit
and concrete simplifies the construction of complex behaviours.

CHAPTER 3. CODA 26

An object’sReceive is accessed usinganObject meta receive{:}. It is invoked by objects when
they are looking for the next message to process and invokes the object’sQueue. It responds to the
following messages:

receiveFor: base Answer the next available queued message. This defines the default receiving
behaviour and is typically, though not necessarily, mapped to one of the receive operations
given below.

nonBlockingReceiveFor: base Answer the next available queued message ornil if none are avail-
able. Subsequent calls will not return the same message. An answer is always returned
immediately.

blockingReceiveFor: base Answer the next available queued message. Subsequent calls will not
return the same message. An answer is not given until a message is available.

3.4.5 Protocol

A message, having been received, is translated into a method for execution. This is the primary
responsibility of an object’sProtocol. The most common mapping is an exact message selector to
method name match where methods are examined according to some inheritance scheme.Protocols
define both the selection criteria (e.g., exact match) and the search scheme (e.g., single/multiple
inheritance). In more complex cases,Protocols may maintain multiple method tables and determine
which to use based on some aspect of the base-level or system state.

An object’sProtocol is accessed usinganObject meta protocol{:}. It is invoked by objects when
they need to map a message to a method to execute. That is, typically from an object’sExecution.
It responds to the following messages:

methodFor: message for: base Answer the method best suited to processingmessage. If a method
cannot be found then answer a method which will handle the error condition.

3.4.6 Execution

For an object to execute methods, it must interact with some system resources (e.g., virtual machines,
processes).Executions describe how this interaction occurs. By manipulating itsExecution, a
programmer can control where and when an object runs as well as its overall importance (e.g.,
priority) and independence.

Executions describe the basic processing activity of an object: How and when they receive,
lookup and execute messages. For passive objects this is determined largely by the external thread
of control and when other objects send messages to theExecution’s base-object(s). For active
objects, theExecution has complete control over these aspects. It must define what the object does
when it is not processing some received message as well as how the object’s execution maps onto
physical computational resources (e.g., processes and processors). In short, theExecution provides
an encapsulation of processing power and the logic for using it.

CHAPTER 3. CODA 27

Having an explicit execution model also enables methods to be somewhat more abstract and to be
executed in different ways depending on the situation. For example, if we are debugging an object,
we may wish to execute its methods on a special debugging virtual machine or interpreter whereas
normally methods are executed as native machine code. It is theExecution’s job to determine how
to execute methods and then execute them. Concepts such as group-wide computation[25] are
implemented by creating objects which shareExecution components.

An object’sExecution is accessed usinganObject meta execution{:}. Executions are generally
invoked by either theAccept or Queue (in the passive case) or by the explicit or implicit invocation
of a receive operation (in the active case). It responds to the following messages:

execute: method with: arguments for: base Executemethod with arguments on receiverbase.

process: message for: base A convenience protocol which combines message to method mapping
and method execution.message is processed by first sendingmethodFor:for: to the relevant
Protocol and thenexecute:with:for: to the receiver.

processImmediately: message for: base Similar to process:for: but the any execution currently
underway is interrupted with the processing ofmessage.

activityFor: base Answer an evaluable description ofbase’s activity loop.

3.4.7 State

States describe the physical storage and structure of objects. They implicitly define what slots
an object has as well as explicitly define how the data in those slots is stored. TheStates do not
actually hold the data, they simply know how it is accessed.

An object’sState is accessed usinganObject meta state{:}. States are invoked whenever one
of the object’s slots is accessed and and respond to the following messages:

at: id for: base Answer the current value of slotid in base.

at: id put: value for: base Storevalue in slot id of base.

slotIdsFor: base Answer a list of all the ids for the slots available inbase.

3.5 Meta-level framework

In CodA, meta-levels are defined by compositions of the decomposed operations within a frame-
work. We are guided here by a general approach to object-oriented software engineering (para-
phrased here):

Decompose a problem into a number of smaller, relevant sub-problems. Supply a
framework for sub-problem manipulation and then compose solutions to the sub-
problems to solve the whole problem.

CHAPTER 3. CODA 28

This separates structure and semantics. The operational decomposition into objects discussed
above gives us a set of guiding principles for factoring behaviour descriptions. The specific de-
composition we propose in Section 3.2 fully defines the behaviour of individual objects in a generic
object system. Since our decomposition strategy removes the implicit structure from the meta-level,
we add it back in with an explicit framework for composing and configuring the meta-components.

A CodA object does not have a single entity which is “the meta-level” but rather defines the
meta as a named conceptual collection of all the meta-components which describe a particular
object.metas may take many forms but are always onlybrokersfor the services provided by their
meta-components. They are the foundation of the framework for managing the meta-level. They
provide the mechanisms for manipulating the meta-components and forming coherent structures.

metas do not themselves define object behaviours. They may store internally the meta-
components they broker, they may simply fetch them from somewhere when required or may
even create new ones for each request. This is transparent to the user/programmer.

The framework we propose is completely extensible and free of semantics. It places no particular
meaning on any particular behaviour or component. It is designed to support basic properties of
one object’s meta-level:

1. Behaviours are named.

2. There may be arbitrarily many behaviours and components.

3. Components may be represented differently.

4. One component may define several behaviours.

5. Components may be replaced by other compatible components.

6. Components (and thus behaviours) may be shared between meta-levels.

Meta-levels are formed by composing the components which define all of the behaviours of an
object. There must be a definition for each. Behaviours which are not explicitly specified assume
some default definition as supplied by the implementation environment.

The CodA meta-component framework is completely extensible allowing new behaviours and
components to be added by users. Adding a new behaviour is a matter of defining its name within
the framework and creating components to describe the desired operations. In general we develop
at least two components for a behaviour; one which defines some default operation and one which
defines the new operation we specifically want to add to objects. The default component is used
when an object’s behaviour is accessed but no component has been explicitly provided. It provides
interface compatibility but typically defines all operations as no-ops. By doing this, all objects can
be made to appear to have a definition for the new behaviour. Developers then create variations on
this default behaviour and substitute them individual or groups of objects.

The physical representation of themeta is left to particular implementations of CodA (see
Chapter 6 for details of the Smalltalk implementation). Similarly, the syntax and mechanisms for
invoking and accessing the meta-level are implementation details. For the purposes of discussion
however, we introduce here the Smalltalk syntax and use it throughout this document.

CHAPTER 3. CODA 29

Most meta-level architectures are coupled with a particular language and so the language itself
has been adapted/designed to facilitate meta-level access. For example, meta-level programmers
need a way of indicating shifts to the meta-level or accesses to meta-level objects. ABCL/R2 uses
the↑ (up arrow) [25] to signal a shift to the meta-level.

In CodA we adopt the technique best suited to the base-level language. For the Smalltalk
implementation we chose to limit changes to the language itself and so implemented level shifting
via message passing which is already integrated in the language. In particular, sending themeta
message to some object (e.g.,anObject meta) returns an object whichrepresentsmeta-level com-
putation. Any messages sent to this object are executed in the context of the meta-level. As such,
the result ofanObject meta is the CodAmeta.

3.5.1 Object models

The basic framework functions well as long as the number of behaviours it manages is small and the
behaviours themselves are small and independent. As the system scales up and behaviours become
inter-related, it becomes more and more difficult to manage — There are no higher level structuring
mechanisms. To address this we introduce the idea ofobject models, the main mechanism for
structural abstraction and organization.

Object models represent higher-level concepts and allow the grouping of interdependent be-
haviours. Models are used to describe things such as classes, concurrency and distribution. Their
main role is to specify configurations of meta-components which form some logical or coherent
behaviour and insure consistency across the operations of a particular meta-level. As such, an
object model is really a set ofconstraintson the a group of behaviours relevant to its domain. Some
models have descriptions of one or two behaviours while others specify many. For example, the
ConcurrentObject model specifies constraints on two behaviours,Execution andQueue. All others
are immaterial.

The constraints on a particular behaviour may take many forms from very specific to very
broad. A model does not necessarily contain the components of which it is composed but may
simply describe them. For example, a model may specify that a particular type (class) of object be
used for some behaviour. Or that an object with particularpropertiesbe used.

Consider standard classes for example. Classes are really just specific meta-level configurations
which are shared amongstinstances. For an object to be aninstanceof some class, it must share its
specifications of protocols (i.e., methods) and state (i.e., slots) with the other instances. Figure 3.2
illustrates this for thePoint class and some instances.

CodA has no explicit class structures but the object model construct can be used to give the
same effect. We define a class object model to be a model which constrains theProtocol andState
behaviours to be defined by specific meta-component objects. This model is then forced on all
base-level objects wishing to be considered instances of the ‘class’. Using this approach, we define
a different model for each class since theProtocol andState behaviours differ from class to class.

Figure 3.3 gives an example of aPoint object model. It shows two objects,A andB which are
bothinstancesof Point. ThePoint model specifies particularProtocol andState components which
define those behaviours forPoints. A andB ’s meta-levels share these meta-components but are
free to redefine all others.

CHAPTER 3. CODA 30

A B

Slots

Methods

Point
Class

Figure 3.2: A standard class configuration

A B

State

Protocol
Point
Model

A meta B meta

Figure 3.3: Class object models

CHAPTER 3. CODA 31

To get the effects of inheritance, we createStates andProtocols which take undefined elements
(i.e., slots and methods) from the components of the superclass object model. The inheritance
mechanism’s implementation can include single and/or multiple inheritance, delegation or any
other approach as appropriate. Notice also thatState andProtocol inheritance are disjoint and can
follow different rules.

Class models specify very particular constraints on the components which can be used to define
behaviours. Other object models, such as theConcurrentObject and ConcurrentObject models
described later, provide only rough descriptions of thepropertiesthat suitable meta-components
must have. A given model can combine many different kinds of constraints.

Overall, object models are somewhat like Apertos metaspaces [43, 44]. Metaspaces are gen-
erally larger and more concrete and are defined in a hierarchical fashion. Since object models
can vary in size and sophistication from a simple constraint on one behaviour to a complex set of
constraints on many behaviours, CodA does not dictate how object models are defined or managed.
The best mechanism is likely one which is natural to CodA’s implementation environment. We do
however, supply some infrastructure for their combination.

3.5.2 Object model combination

CodA object models are smaller and more dynamic than Apertos metaspaces. Meta-levels are
created by the dynamiccombinationof object models rather than static declaration. All objects
start out behaving according to thedefault object model. To this we add other models such as
ClassedObjects,ConcurrentObjects, etc.

When a model is added to a meta-level, the components it contains or describes are combined
with those which already exist in the meta-level. Unfortunately, meta-components are general
objects and can be arbitrarily complex. The automatic combination of such entities is an open
problem which exists in all software systems. While CodA is no exception, its architecture contains
certain features which inherently ease the resolution of conflicts.

Combining disjoint (i.e., non-overlapping) object models is straightforward. The new model
or meta-level simply contains the union of the constraints from the original models. As long as
all the constraints and components specified follow the standard CodA interfaces, the object will
continue to run.

Combining overlapping object models may require programmer intervention since the nature
of the collision may be arbitrarily complex. CodA’s fine-grained decomposition into objects helps
in several ways here. First, the finer granularity gives a more precise indication of where the models
collide. Second, the object-orientedness of the decomposition limits both the scope of the conflict
and the spread of the change required for its resolution.

Objects also give us an abstraction of behaviour which is easier to use and reuse. Consider the
situation shown in Figure 3.4. In the figure there are two object modelsX andY . Each defines
constraints for a number of behaviours. As it happens, they both define constraints for theSend
behaviour. If we wish to create a modelXY (the combination ofX andY), we must resolve any
conflicts between constraintsXSend andYSend.

Assuming that the conflicts are non-trivial and cannot be satisfied by some existing meta-
component, they must be resolved manually by the programmer. This results in the creation of a

CHAPTER 3. CODA 32

Send component (e.g.,XYSend) with the properties required by both theX andY models. Having
resolved the conflict betweenXSend andYSend (by implementingXYSend) once, it need never
be resolved again. Other occurrences of the conflict, perhaps during the combination of some
other models, are resolved simply by reusing theXYSend component. As we build a library of
components, conflict resolution becomes more a problem of identifying the existing component
which satisfies the constraints than of actually writing code.

YSend
Model Y

Y...

Y...

XSend

Model X

X...

X...

XYSendModel XY

Y...

Y...X...

X...

Figure 3.4: Object model collision

Unfortunately, automatically determining whether or not two components are semantically
comparable is not easy. CodA addresses this problem using aproperty-based specification and
combination mechanism. A property is a simple declarative token which points out one way in
which a component is different from the default. Properties need not be statically declared but can
be dynamically computed. The property set of a component can be dynamically modified and can
contain any number of properties.

Comparing property lists provides an even more precise identification of component conflicts.
They highlight not only the components which collide but the way in which they collide. Rather
than hard-coding the use of particular components in an object model, programmers declaratively
specify the properties that the components must have. For example, theConcurrentObject model
specifies that it requires anactiveExecution component. Any activeExecution will do. Whether
a change is required and which actualExecution is used is determined when the model is merged
with others.

Properties, like many categorization systems, suffer from naming problems. Defining and
guaranteeing the semantics of a particular property is difficult at best. So, while they do not solve
the composition or combination problems, these operations, in a sufficiently rich and consistent
component environment, are reduced to property constraint satisfaction.

A complementary approach is component generalization and parameterization. In creating
the various object models discussed here, we applied the above techniques with success. As we

CHAPTER 3. CODA 33

developed more and more overlapping models, we found ourselves generalizing and parameterizing
the various components to be more reusable. For example,Executions were changed to take a user
supplied code block to define their execution activity. The result was a library of general components
which can be setup in many different ways and so can be used in many different situations. Object
models then contain property constraints and parameter specifications.

3.6 TheConcurrentObject model

As an introductory example of how the meta-level is manipulated, we present theConcurrentObject
model. Passive objects are reactive in that they simply respond to external stimulus or input and
‘borrow’ processing resources from message senders. In theConcurrentObject model, objects have
their own internalactivity and processing resources (threads). This behaviour is described by a
ConcurrentExecution component, a kind ofExecution.

A ConcurrentExecution’s idling execution behaviour (i.e., what objects do when they are not
driven by user code) is similar in intent to that of Actors as seen in [1, 7, 28]. While formal Actors
redefine their execution behaviour after every execution, in practice the replacement behaviour is
the same; receive and process a message. Our basic activity model is similar; an endless loop,
receiving and processing messages. For passive objects, the activity loop is implicit in the runtime
system. ForConcurrentObjects, the loop runs explicitly in the threads associated with an object’s
ConcurrentExecution. The following is an example of such a loop for an objectbase.

| message result |
[true] whileTrue: [

message := base meta receive receiveFor: base.
result := self process: message for: base.
base meta send reply: result to: message for: base]

When a message arrives, a passive object’sQueue actually calls the object’sExecution and
directly triggers the processing of the message. That is, there is no queuing, only immediate pro-
cessing. TheReceive is never called explicitly as objects are always implicitly receiving incoming
messages. Adding explicit thread(s) and an activity to an object both invokes itsReceive and raises
the possibility that the sender and receiver of a message may be disjoint with respect to execution
threads.

In addition to the activity loop,ConcurrentObjects change theQueue to ensure that messages
are actually queued rather than passed on to theExecution. StandardQueue (shown below) is an
example of such aQueue. It maintains an internalqueue structure on which it implements the
Queue interface. The actual queuing model used (e.g., FIFO) depends entirely on how we want
incoming messages to be ordered (i.e., the object’s queuing policy). This is specified by the user
in the creation of theStandardQueue.

StandardQueue»nextFor: base
^queue next

CHAPTER 3. CODA 34

StandardQueue»enqueue: message for: base
queue add: message

TheConcurrentObject model does not need to define new message sending mechanisms as the
defaultSend components already include the notions of synchronous, asynchronous and future
messages. In the default, passive object case, synchronous sending is the default, future messages
represent a promise to compute similar to closures or blocks, and asynchronous messages are
mapped to synchronous messages where the result is ignored.

These ideas are included in the default behaviour for two reasons; they are useful in normal
object behaviour description and they are relevant to system parallelism, not object concurrency.
For example, a distributed system may contain noConcurrentObjects but still require asynchronous
sends.

3.7 Abstraction, compression and expansion

While we claim that the default meta-level decomposition discussed above covers every aspect of
basic object execution with fine-grained meta-components, we also recognize that there may be
situations where our decomposition is either too coarse or too fine. Addressing this requires no
new mechanisms, just the realization that the meta-level is extensible.

If a particular behaviour is found to be too coarse in some situation, it can beexpandedor
broken into pieces, each of which becomes a new meta-level behaviour. These new behaviours
are individually and independently addressable and manipulable. The original behaviour remains
unchanged but its defining component is changed to delegate the various component interface
methods to the components defining the new behaviours.

A

A meta

QueueReceive

Queue/
Receive

A

Queue Receive

A meta

Queue/
Receive

A

Set Get

A meta

State

CompressionAbstraction Expansion

Figure 3.5: Meta-level behaviour compression and expansion

The right side of Figure 3.5 shows the expansion concept applied to theState behaviour.
Expansion produced two new behaviours,Get andSet which are added to the meta-level. The
implementation of theState component is modified to delegate the appropriate operations to the

CHAPTER 3. CODA 35

new components. Note that theState component still exists and continues to provide valuable
behaviour description (i.e., a description of the state slots and their representations).

Similarly, if part of the decomposition is found to be too fine, it can beabstractedby creating
a new behaviour which is a logic combination of several existing behaviours. The left side of
Figure 3.5 depicts the abstraction of theQueue andReceive behaviours into one. The abstraction
results in a new behaviour,QueueReceive, being added to the meta-level. The component defining
that behaviour combines and abstracts the originalQueue andReceive components and adds some
operational ‘glue’.

In an effort to gain efficiency (in speed or space) we may also want to have the same physical
object define several behaviours. This is shown in thecompressionpart of Figure 3.5. The
Queue and Receive behaviours are both defined by a singleQueue/Receive object. Note that
a new behaviour has not been added to the meta-level as with abstraction. Compression is an
implementation technique which is transparent to the meta-level user.

3.8 Summary

Typical meta-level architectures are reifications of existing language systems. As such, their de-
compositions and frameworks contain embedded structure derived from the underlying models.
This restricts the range of behaviours which can be described easily. We have designed CodA to be
independent of base-level language concepts and so be capable of defining a wide range of object
models. This was done by basing our decomposition on the operational aspects of a very basic
object system containing just message sending, method execution and state accessing. Our ba-
sic operationaldecomposition contains seven default behaviours;Send, Accept, Queue, Receive,
Protocol, Execution andState. The execution-time interfaces for each is outlined.

We show how the meta-components which describe these behaviours are arranged in a generic
framework which provides naming and object attachment services. The framework itself defines no
semantics and is completely extensible. Using this general framework, the structuring abstractions
(e.g., classes) which were lost during the operational decomposition are reconstructed in a generic
way using the concept ofobject models. Object models are groupings of meta-components which
go together to describe some logically consistent unit. This is demonstrated by showing how a
class is represented by an object model. CodA’s inherent facilities for object model combination
are also presented.

We have taken these design approaches in an effort to make the system as general as possible
but still provide the user with support for abstraction and meta-level concept manipulation. Later
chapters demonstrate the usefulness and capability of CodA by presenting non-trivial object models
which are from varying domains but which are all described within the same architecture and can
all be used together. These models are combined and an applied to significant applications with
relative ease.

Chapter 4

Ported Objects

In the previous chapter we presented the CodA architecture and gave some simple examples of
changing an object’s behaviour (e.g., theConcurrentObject model). In this chapter we present
a farther reaching and more complex model,PortedObjects to show how deep changes in object
behaviour are effected. Though this model defines radically different object semantics, it is imple-
mented largely by changing the definitions of already existing behaviours rather than adding new
ones.

PortedObjects are objects which communicate and behave in a dataflow-like way. They have
portsor channels over which data flows. Users programPortedObject systems by building connec-
tions between the ports on objects. ‘Programs’ are run by feeding data into free parameter ports.
The values put in a port are automatically broadcast to all the objects to which it is connected.
When an object in the graph has sufficient input, it processes the data and stores the results in its
result ports and so, passes it to the next object. This process continues and data flows through the
graph and is processed.

The need for thePortedObject model arose out of our work with Vibes [26], an object behavioural
analysis toolkit. The application itself is described in detail in Section 7.3 but a brief overview
is given here. Vibes is a data analysis tool much like AVS [41], IRIS/Explorer [39] and parallel
system analysis tools such as Pablo [36]. The common denominator for these systems is their
dataflow architecture. Computation, and thus analysis, is done by chaining togethernodeswhich
accept data, transform it in some way and output it to following nodes. Chains are allowed to split
and merge to form a graph structure.

In most existing systems the computation done at each node is quite simple and largely mathe-
matical. This is suitable for scientific and statistical analysis techniques but does not support more
symbolic analysis techniques. Further, the mode of programming new node computations is rather
rigid. Programmers must create procedures and data types which conform to the architecture’s
model. These analysis modules typically cannot be reused in other contexts (e.g., other analysis
tools).

For Vibes we sought to build a system which is flexible, supports symbolic and numerical
computation and facilitates standard software engineering practices such as reuse and factoring.
The key to achieving these goals is a clear separation of the analysis operations and the dataflow
architecture (i.e., base- from meta-level). The CodA architecture and thePortedObject model

36

CHAPTER 4. PORTED OBJECTS 37

enables this separation and allows programmers to use normal imperative objects in a dataflow
computational environment without significant code modifications.

As a result, analysts simply take available objects which describe the desired analysis node
operations (e.g., filters, collectors, expert systems, DSP processors), modify their meta-level to
have ported behaviour and chain them together. This is possible with everyday, generic (i.e., not
dataflow-specific) objects. If an object describing the desired computation does not exist, the
programmer must create one. These new objects need not be written in a dataflow style since they
can be adapted after-the-fact (i.e., at the meta-level). As such, they can be reused in many different
applications and computational domains. Both modes of reuse are major advantages for people
building complex analysis systems.

In addition, it is interesting to note that thePortedObject model is attractive to researchers
working on formal expressions of communication and concurrency. For example, concurrency
formalisms like theπ -calculus [29] make use of channels and ports to specify object communication.
We have not pursued this line of research but its obvious connection to thePortedObject model
further justifies the model as a useful and important meta-level modification.

For our purposes, thePortedObject computational model must incorporate the following prop-
erties:

Pluggability and Extensibility Ordinary objects must be capable of being ‘plugged’ into arbitrary
object graphs but be isolated at the base-level from the graph’s details (i.e., objects are not
directly accessible). If an object is not isolated from the details of its containing graph, the
system would not be extensible. Changes in the graph would require changes in the object
which may not be possible.

Nesting To handle large and complex subsystems, we must be able to partition a graph into
coherent, non-intersecting subgraphs. Subgraph containment must be transparent to the
containers and the containees.

Pluggability allows the construction of arbitrary computation graphs by connecting together
sets of generic objects rather than imperative programming. Nesting supports the abstraction and
grouping functional units both for design and reuse. Combined, these capabilities create the basis
for a powerful and general analysis architecture.

4.1 Meta-level design

Since thePortedObject model is a dataflow paradigm in which an object’s logical data (e.g., object
state) takes on a new role; that of a communication mechanism. From the base-level, explicit
message sends and receives betweenPortedObjects are not possible. Objects see the outside world
only through their input ports and affect it only through their output ports. Ports are treated as
state producers and consumers. Reads and writes from/to (logical) state slots are communications
operations.

At the meta-level however, this is just a restriction on the nature of normal object message
passing. Outgoing messages, rather than being triggered by some explicit base-level code, are

CHAPTER 4. PORTED OBJECTS 38

initiated by state slot modifications. If a slot is associated with some port(s) then the new value is
transmitted to each object connected to that port. Incoming messages, rather than being mapped
directly onto methods, update the availability of new data values (i.e., logical slots) and potentially
trigger the execution of the object’s code which depends on those values. There is a significant
decoupling and abstraction of object intercommunication.

We talk about ports as being implicit or explicit. Explicit ports are ones which exist in the
object’s natural description. They typically occur as instance variable slots into which values
arriving over ports can be stored. Often they set auxiliary parameters or configurations. Implicit
ports on the other hand typically exist as method arguments. In the imperative paradigm, values
are passed into these ports during a function call or message send. In the dataflow paradigm,
parameter arrival and object execution are decoupled. ThePortedObject model, implicit slots are
added automatically. There are no other tangible differences between implicit and explicit ports.

ThePortedObject model is implemented in changes to the definitions (i.e., meta-components)
of a number of behaviours at the meta-level. The changes fall into two main categories: value
transmission and coordination.

Value transmission takes the form of multicast messages between meta-level components.
Objects with new values on an output port multicast the value to the meta-levels of all the objects
connected to that port. Objects with multiple input ports have some mechanism for maintaining
the separation of messages arriving over different ports, either by tagging or multiple queues.
Definitions for these operations are found in theSend, Accept andQueue behaviours.

It is important to remember that message passing at the meta-level is independent of execution
of the base-level. A message passing from one object’sSend to another’sAccept does not imply
that the receiving base-level object will execute immediately or at all. The receiver’s meta-level is
free to delay, ignore or modify the incoming message. In thePortedObject case, messages at the
meta-level are used as data carriers. Moving data from port to port.

Exactly how the multicast-related behaviours are defined depends on the model desired. For
example, connection management is only needed if communication security is required. By main-
taining lists of connections between specific ports on specific objects, we ensure that ‘sent’ values
are only sent to connected objects and that ‘received’ values come only from connected objects.
This also enables a certain degree of implementation hiding and abstraction. Ports can be typed
allowing for safer interconnections. Connection objects can be used to map output ports to input
ports rather than relying on implicit information about the source or destination of a value. These
features decrease the effort required for maintenance and increase the pluggability of objects.

Coordination modifications are needed to effect a change in the way object execution is
triggered. Normally, an object’s base-level is triggered with the arrival of each new message.
PortedObjects however, cannot receive messages, just data values in ports. As mentioned above,
data values are transmitted by messages at themeta-level. These messages in turn affect the status
for their receiver’s base-level object’s ports.

Some base-level objects should execute every time they a new data value is available on any of
their ports. Others must only execute when values are available on some number or all of the ports.
There are many possible of firing rules. Which is correct depends on the object, its status and the
ports involved. We say that an object iscoordinatedwhen at least one of its firing rules has been
satisfied. An object’sReceive defines its coordination characteristics. In addition, itsExecution is

CHAPTER 4. PORTED OBJECTS 39

slightly modified to take into account the requirement for coordination before execution.
Figure 4.1 shows the modified meta-level of aPortedObject. The changes to the default com-

ponents forSend, Accept, Queue, Receive andExecution are detailed in the following sections.

Multi-
Accept

Multi-
Send

Coord.
Execution

Multi-
Queue

Coord.
Receive

PO

Figure 4.1: ThePortedObject meta-level

4.1.1 Send

At the inter-object level,PortedObjects cannot explicitly send messages. They can only store values
in their logical output (result) ports. A base-level object cannot tell whether or not storing a result
will cause the value to be transmitted to some other object. The meta-level however, can detect the
result setting operations and trigger the multicasting of the new value to all objects connected to the
modified port. So, while base-levelPortedObjects have no explicit send operations, they implicitly
use message sending in their implementation.

A PortedObject’s Send behaviour is defined by a genericMultiSend component which provides
infrastructure for multi-casting messages to a known set of receivers. ForPortedObjects these
receivers are represented by ports and connections.MultiSends have additional interfaces for
managing who receives what messages.

4.1.2 Accept

PortedObjects useMultiAccept components to describe theirAccept behaviour. Their definition
differs from that ofDefaultAccepts only in their support for maintaining and managing sets of asso-
ciated objects (e.g., ports and connections). LikeMultiSends, this consists mostly of add/remove and
connect/disconnect methods in various forms. Operationally, as messages arrive (viaaccept:for:),
MultiAccepts mark them with the port over which they came and queues them as per normal oper-
ation.

CHAPTER 4. PORTED OBJECTS 40

4.1.3 Queue

The PortedObject model usesMultiQueue components to define for theirQueue behaviour. A
MultiQueue supports the sorting of elements into one of many logical queues as defined by some
discriminator, in this case, the arrival port. The defaultQueue interface is augmented with duplicate
operations which take an additional parameter, a port identifier.

4.1.4 Receive

A PortedObject’s Receive is concerned more with parameter coordination than ports and connec-
tions. SomePortedObjects require several inputs to be present before processing can take place.
In some cases, processing only makes sense if some set of these parameters are reset from iteration
to iteration. In others, a change of one parameter is cause for recalculation. To manage these
constraints,PortedObjects useCoordinatedReceive components.

When aCoordinatedReceive is asked toreceiveFor: by an Execution, it produces the next
available message which satisfies the current set of coordination constraints,cSet (see code below).
HerecSet represents a very simple system of constraints based on a collection of port identifiers
from which it is valid to take a value. As values arrive, their port is removed fromcSet. When the
set is empty, we know that we have received all the required values and so the object is ready for
processing. That is, the receiver iscoordinated. The initial values for thecSet are derived from
information supplied by the programmer as part of thePortedObject definition scheme.

CoordinatedReceive»receiveFor: base
| message |
message := base meta queue nextSatisfying: cSet for: base.
cSet remove: message arrivalPort.
^message

This example uses a very specific and simple constraint system.CoordinatedReceives in general
can use any means of determining coordination. A generalized version takes a user-supplied
coordination source. This object producescSets for use in the dequeuing operation. After a
message is fetched, the coordination source is told which message was retrieved so it can adjust its
state. Using this technique,CoordinatedReceives are usable in many different situations and can
manage arbitrarily complex constraint systems.

4.1.5 Execution

SincePortedObjects do not have explicit message passing, we draw a distinction between the
implementation receiving and executing a message, and the base-level object itself being evaluated.
PortedObject evaluation can only happen when the object is coordinated. The messages handled
by theSends andReceives are infrastructure related and serve to transfer data (i.e., parameters and
results) and determine coordination.

The main change in aPortedObject’s Execution is highlighted by the modifiedprocess:for:
method shown below. After executing an infrastructure message (2+3), theExecution tests for

CHAPTER 4. PORTED OBJECTS 41

coordination (4). If the object is coordinated, it is evaluated (5). After evaluation, the coordination
set is reset (6).

CoordinatedExecution»process: message for: base
1) | method |
2) method := base meta protocol methodFor: message for: base.
3) self execute: method with: message for: base.
4) base meta receive isCoordinated ifTrue: [
5) self evaluate: base.
6) base meta receive resetCoordinationSet]

The definition of evaluation varies from object to object. It is abstracted out and supplied by the
user or the base-level object’s definition. The evaluation of aPortedObject can perform arbitrary
manipulations (e.g,. mapping) of the port values before invoking the actual operation represented
by the object.

4.1.6 Example

Using the above definitions of object behaviour, the following steps occur during the interaction
between two objects,A andB which are connected. Readers should compare this with the basic
execution model described in Section 3.3.

A detects a change in the output portR so it takes the new value and wraps it in a meta-level
messagenewValue: (the value is the argument). The message is then passed, at the meta-level, to
the Accepts of all the objects connected toA’s R port (includingB). When the message arrives
at B ’s Accept, its arrival port is checked and the message is tagged and queued. TheMultiQueue
maintains one (logical) queue for each input port ofB. B is continually waiting for new messages
and so at some point, fetches the one containing the value fromA’s R. Executing this message
sets the value of the associated input port to the value contained in the message and updates the
coordinated status ofB. If B is now coordinated then its evaluation code can be run.

Overall the execution is very similar to the normal objects with the major exception being the
disjoint nature of message receipt and object evaluation.

4.2 Applying PortedObjects

Clearly not all objects are suited to this sort of model. Typically objects with large and complex
interfaces cannot be adapted or can only be adapted in a limited way. Often however, the kinds of
objects you would like to use in a dataflow situation do lend themselves to thePortedObject model
and can be used quite effectively.

The addition of porting to an object is done by first identifying its parameters and results as
logical entities. Each parameter or result is made into a port on the surface of the object. The object
being ported must also be analyzed to determine its execution requirements (i.e., coordination
constraints). The analysis should determine the main functions of the object and their operating

CHAPTER 4. PORTED OBJECTS 42

conditions. Then an abstract firing specification is created which matches the coordinated state of
the object onto an actual execution sequence.

For example, assume some objectO is a signal processing element which can calculate corre-
lations between two input data sets,A andB. If O is a normal object, it has some interface method
(e.g.,correlate:and:) which takesA andB as arguments and returns the result of their correlation.
To make this into aPortedObject and hideO ’s interface, we first identify the two input ports,A and
B and one output (result) port, sayR. We then define the firing specification such that when there
are new data values on bothA andB, the operationcorrelate:and: is executed with the current port
values as arguments. The return value is automatically mapped into the portR and passed on to
any connected objects.

These changes can all be done in terms of annotations (see Section 6.5.1 which define the
various porting properties. Figure 4.2 shows the annotations needed to add porting for correlation
on the DSP object mentioned above. Most of these definitions can be generated from a little bit
of user input. The evaluator function is an arbitrary piece of code supplied by the user. The ports
are made available as methods on the object itself. Reading from a port is a typicalgetoperation
while writing to a port is a typicalsetoperation. Naming collisions with pre-existing methods are
avoided by automatic detection and renaming of the port accessing methods.

POdefaultParameters
"The names of the default parameter ports"
^#(data1 data2)

POdefaultResults
"The names of the default result ports"
^#(result)

POdefaultCoordinatedParameters
"The set of input ports to coordinate before executing the object"
^#(data1 data2)

POdefaultEvaluator
"The default mechanism for evaluating the object"
^[:anObject | | result |

result := anObject correlate: anObject data1 and: anObject data2.
anObject result: result]

Figure 4.2: Correlation annotations

With these declarations placed in the class of the object to be ported, we can port an instance
of the class using the following expression.

anObject meta installModel: PortedObject for: anObject

CHAPTER 4. PORTED OBJECTS 43

The installation procedure automatically constructs the necessary meta-components, ports,
virtual slots etc. to makeanObject ported. Once this has been done, the object is free to be
connected to others and run. Note that due to the coordination constraint requiring inputs on both
input ports before the object will evaluate, both ports must be connected to some data source.

There are a variety of techniques for actually connecting ports together. Below we show one
which uses the model definition itself to manipulate the meta-levels and make the connection. In
the example, portresult of the object calledsource is connected to the port calledinput of dest.
Again, this automatically constructs all the necessary infrastructure and installs the connection.

PortedObject connect: #result of: source to: #input of: dest

Further discussion and examples of thePortedObject model are given in Section 7.3 where we
present the Vibes data analysis tool developed for CodA.

4.3 Compound ported objects

In complexPortedObject graphs we would like to be able to think of and manipulate a group of
PortedObjects as one. The encapsulation should be completely transparent to objects both inside
and outside the group. By taking a generic analysis object and reusing some of the meta-components
already described, we can create acompoundPortedObject as shown in Figure 4.3.

Compound

p1

p2

r2

r1

A

B

C

Figure 4.3: Compound object example

In the diagram we see three objects (A, B andC) encapsulated inCompound. Compound is
itself just a generic analysis object which by default has no ports or particular evaluation behaviour.
We have added parametersp1 andp2, and resultsr1 andr2. The parameters and results are logically
linked, as appropriate, to those of the contained objects. The design ofCompound is an interesting
problem.

In accordance to thePortedObject model, data values coming toA should come from some
PortedObject’s Send (e.g., aMultiSend). Compound’s Send fits those requirements but it manages
theexternalconnections forCompound and has no facilities for managing a separate set ofinternal
connections. The situation is similar forCompound’s result ports andAccept.

CHAPTER 4. PORTED OBJECTS 44

An obvious solution is to implement newSend andAccept components which keep two con-
nection lists, one internal and one external and manage messages accordingly. But this would just
be duplicating existing behaviour and adding special cases in connection management. An alter-
native is to use twoPortedObjects instead of the singleCompound. One would handle the group’s
parameters and one its results. This however goes against our goal of having the group act as one
object — The group’s incoming and outgoing connections are connected to different objects.

We take a novel approach and extendCompound’s meta-level to have two new behaviours,
InternalSend andInternalAccept. These behaviours are actually defined by normalMultiSend and
MultiAccept components.Compound’s original Accept andSend components remain unchanged
and continue to handle all external connections whileInternalSend andInternalAccept handle the
internal connections. Figure 4.4 shows the configuration for the parameter side ofCompound from
Figure 4.3. Note thatp1 andp2 in the two figures are the same.

Accept

p1

p2

Internal
Send

p1

p2

Figure 4.4: Compound object parameter handling

Compound’s Accept has two ports,p1 andp2, corresponding to its two parameters. Values
arriving at those ports are tagged as described above and then passed, at the meta-level, to the
corresponding port ofCompound’s InternalSend. From there they are, as per normal operations,
broadcast over the appropriate port’s connections to the objects contained inCompound. The
structure of the result side is analogous though reversed.

The contained object’s meta-levels have no idea that they are inside a compoundPortedObject.
The objects connected toCompound have no idea that it is a compoundPortedObject. The encap-
sulation is completely transparent but for the addition of one message pass’ overhead. The result
is a very powerful abstraction mechanism which allows compoundPortedObjects to be arbitrarily
connected and nested.

4.4 Summary

This model is simple and appealing. From a porting and communication viewpoint, all objects
have a consistent and uniform model. From a meta-level architecture point of view, Compound
PortedObjects demonstrate how the meta-level is completely extensible and how meta-component

CHAPTER 4. PORTED OBJECTS 45

defined behaviour is reused. In our original architecture design we never imagined a requirement
for having multipleSend or Accept components. In this situation however, it is not only convenient
and reusable but is esthetically pleasing.

Furthermore, the meta-components developed for this model are quite generic. It is easy to
see other situations, quite independent of thePortedObject model, in which we would like to have
multicast behaviour or coordinated behaviour. In those cases, these components can be directly
reused.

Chapter 5

Tj

Our previous example object models have largely involved only the modification of existing meta-
level behaviours. In this chapter we explore a group of object models which define behaviours
completely new to normal objects. In particular, we presentTj, a distributed object system.Tj
contains models for generic distributed objects as well as replicated and migrated objects.

Our objective in implementingTj was to create an environment for designing and experimenting
with distributed applications and various forms of distributed object computing. The creation of
distributed applications is often hindered by a lack ofa priori knowledge of how objects will react
to distribution. The use of strongly typed languages can help static analysis techniques determine
call graphs and interaction patterns but it is difficult to account for the dynamic nature of distributed
systems (e.g., the same application may run differently depending on the machine topology). This
is also true of the distribution mechanisms themselves.

Notions such as distribution are often embedded in a language system or base-level code. This
prevents users from easily experimenting with new forms and policies for distribution. They must
use that language or distribution system. These environments are often restrictive and require
changes to base-level semantics to incorporate meta-level (i.e., distribution) concepts.

In our approach, the separation of the base-level application code from the meta-level object
behaviour (e.g., distribution) code plays a key role. This separation enables distributed application
developers to prototype their applications and experiment with distribution models while minimiz-
ing the effects on the application’s code. We allow normal objects to be reused in a distributed
environment by transparently adding distribution behaviour to their meta-level. In addition, new
distribution mechanisms are more easily integrated with existing object behaviours.

There has been relatively little work done using explicit meta-level architectures for imple-
menting distributed object systems. Apertos [43, 44], AL/1-D [33] and GARF [15] being notable
exceptions. These systems vary in their domain and approach.

GARF’s domain is communications and transactions. The system provides various forms of
replication and persistence for objects. It is based on a limited, two level meta-level architecture
which is somewhat specific to their domain. Apertos and AL/1-D emphasize the operating system
aspects of distributed systems. They focus on the reification of system-level notions such as, shared
resources, memory paging and object naming, and do not provide object related operations such
as replication. While these issues are important, CodA andTj concentrate on the object aspects of

46

CHAPTER 5. TJ 47

distributed object systems.
We start with a general meta-level architecture and add comprehensive distribution mechanisms.

It is important to have a sound footing for describing object behaviour because the issues related to
distribution are far-reaching. They involve heterogeneous state representations and update policies,
and demand mechanisms for the control of the intra-object concurrency implicitly introduced by
remote referencing. The use of a general framework oriented towards objects enables behaviour
reuse, combination and extension far beyond that available to special purpose (e.g., ‘distributed’)
systems.

Tj provides both distributed computation mechanisms such as remote references, replication,
migration, etc. and a general architecture for defining and describing policies for their use. Partic-
ular emphasis is placed on argument and return value passing techniques (i.e.,marshaling). While
most systems provide a means of specifying marshaling on a per-object or per-object group (e.g.,
class) basis, this is not enough. Objects are often used simultaneously in many different contexts.
We must be able to specify marshaling on a per-use basis.Tj provides an open, extensible mar-
shaling framework based on declarativemarshaling descriptorswhich are specified by users or by
the system via automatic analysis.

Based on these ideas,Tj adds three new object models;

• DistributedObject

• ReplicatedObject

• MigrantObject

TheDistributedObject model reifies general distributed object behaviours such as marshaling, and
augments objects with the infrastructure needed to exist in a distributed system (e.g., global address-
ing). ReplicatedObject andMigrantObject, as their names imply, provide replication and migration
capabilities to objects. These operations are designed in terms of new and existing behaviours.

The following sections detail the underlying infrastructure provided byTj and the new and
modified meta-level behaviours required to add distribution, replication and migration to standard
objects.

5.1 Distributed system infrastructure

A Tj distributed system is a collection ofDistributedObjects living in object spacesand intercon-
nected byremote references. These spaces are mapped ontomachinesin somesystem topology
interconnected bytransport mechanisms. For our discussion here, the important concepts are ob-
ject spaces and remote references. The others are relatively low-level system details the nature of
which will vary from implementation to implementation.

5.1.1 Object spaces

Object spaces are a grouping mechanism for objects. Typically there is one space for each processor
in the system. Each of these spaces maintains a list of the objects and references it imports and

CHAPTER 5. TJ 48

exports. Spaces are also used as part of the globally unique identifier assigned to all objects. An
object’s global id is based on the space in which it lives and some id within that space.

References to remote objects are always represented by the object’s global identifier. On
import, the global id is matched to any local representative (e.g., aRemoteReference or replica)
which may exist in the receiving space. If none is found, one is created and installed automatically.
By manipulating an object space’s import and export tables and these global ids, we maintain
system-wide object identity.

Object spaces also support a simple distributed garbage collection mechanism which releases
export registration for local objects which are no longer referenced remotely. This allows the actual
object to be reclaimed by the local garbage collector if it is not referenced locally.

5.1.2 Remote references

RemoteReferences are the local representation of some remote object. They are similar to
Proxies[37]. LocallyRemoteReferences are just like any other object. They can be stored in
instance slots, assigned to variables, passed as arguments, etc. When sent a message, the sim-
plestRemoteReference just forwards it to the space containing the real object — itstarget. More
sophisticatedRemoteReferences process some messages locally while forwarding others to the
target.

RemoteReferences are themselves implemented using modified CodA meta-components as
shown in Figure 5.1. According to the CodA execution model, when a message is sent to an
object, the sender’sSend and the receiver’sAccept interact to effect the message transfer. In the
distributed case, these meta-components are in different spaces. Local to the sender, the receiver
is a RemoteReference (e.g.,B ′) and itsAccept is an intelligentRemoteReference to the target’s
Accept. Rather than performing the normalaccept operation, the localAccept (RemoteAccept)
marshalsthe message into a stream of bytes and transmits it to the remote space. Once there, the
message is reconstructed andaccepted by the realAccept. In this way, theDistributedObject model
is uniformly applied to all objects in the system, even to those of the meta-level architecture in
which it is implemented!

A RemoteReference’s meta-level is also interesting because the way its meta-components are
managed. SinceRemoteReferences are ubiquitous in the system and they are often short-lived, it is
too costly to maintain an separate meta-level for each just to track the references to its components.
Instead, whenever aRemoteReference’s meta-level or one of its meta-components is needed locally
(e.g., during the message sending shown in Figure 5.1), the system automatically creates a local
representative (i.e.,RemoteReference) of the correct kind.

TheRemoteAccept in Figure 5.1 is an example of this. During the execution ofA’s Send code
something like the following will be executed:

M receiver meta accept accept: M for: M receiver
When we fetch the receiver’s (i.e.,B ′’s) meta we create aRemoteReference whose handle isB
but which knows it is a reference to its handle’s meta-level. Similarly, when we then reference
the remotemeta’s components (e.g.,B’ meta accept), we dynamically create analogous remote
component references. This way we completely eliminate remote messaging for meta-level access.
In a sense these are symbolic references which are resolved to actual objects only when they are

CHAPTER 5. TJ 49

Space 0 Space 1

Accept

A

B

B’

Send

Remote
Accept

Figure 5.1:RemoteReferences and the meta-level

imported into the space which holds the target.
These sorts of mechanisms are very easily and consistently implemented inTj because we have

a uniform basis for their design (i.e., CodA). This is also a demonstration of the integration and
flexibility of the environment. Here we use CodA to implement distributed objects and then apply
the distribution mechanisms back onto CodA itself.

5.2 TheDistributedObject model

The most important property ofDistributedObjects is the reification of their state and execution
behaviours into distinct objects. This is a direct consequence of the CodA object model’s explicit
definition of theState andExecution meta-components. In the distributed domain it means that an
object can store its state in one space but execute in another. Extending this property, an object’s
state and execution can migrate independently. Such relationships and properties are exploited
throughoutTj’s distribution mechanisms.

5.2.1 Distributed object execution

In general, the execution model ofTj objects is eitheractiveor passive. An active object has a
thread of its own while passive objects do not. Normally, when a passive object receives a message,
it borrowsthe thread of the sender method for the duration of the corresponding method execution.
However, when a message is received from remote object, there is no local thread to borrow. The
system provides a thread which does not belong to a particular object but simply executes a set of
message sends from some root method. When that method exits, the thread dies or can be reused.

CHAPTER 5. TJ 50

Active objects, on the other hand, have a thread of their own and execute independently of
the other threads in the system. They also may haveactive methods. An active method is a
method which is executed exclusively by the object’s thread. In contrast,passive methodscan be
executed by any thread. These facilities are used largely in support of controlling concurrency and
synchronization in a way similar to Emerald’s monitors [22]. CodA also supports more sophisticated
intra-object synchronization mechanisms but these are not discussed here.

Distribution is introduced into a system for a number of reasons; because it fits the problem
domain, for fault tolerance or for increased performance. We can gain performance through con-
current or parallel execution of distributed objects. To describe parallelism within a distributed
object,Tj includes notions of distributedmessage arrivaland distributedmethod execution.

Distributed message arrival is the idea that when a message arrives at some object, it is simul-
taneously distributed to all versions (e.g., replicas) of the object. This is different from traditional
message multicasting in that it is defined by the receiver rather than sender. Distributed method
execution implies that when a method is invoked, it is invoked for all versions (e.g., replicas) of the
object.

These notions are different in two ways. First, message arrival does not imply the execution
of a particular (or any) method. This mapping is determined by the receiver’s meta-level. Second,
since messages may be queued before being processed, message arrival and the method execution
which may follow are temporally decoupled events.

These differences are important in that they represent different points in an object’s execution at
which we can control concurrency. By automatically distributing messages on arrival to a group of
objects (e.g., replicas), we leave control over their handling to the individual objects. Individuals
may choose to ignore or delay some messages. On the other hand, distributing method execu-
tion centralizes message handling but injects concurrency into the execution of the corresponding
method.

5.2.2 Marshaling

The marshalingproblem is another important issues in building distributed object systems. To
build a distributed system, it is technically sufficient to supply just a pass-by-reference mechanism.
Unfortunately, the exclusive use of referencing leads to a dramatic increase in cross-space references
and messages. This in turn leads to a decrease in performance of both user code and system code
(e.g., distributed GC). Passing objects by value (i.e., by copying) reduces cross-space messages
but at the expense of an increase in message size. There is also a loss of generality as copying is
typically only applicable toimmutableobjects where it will not affect semantics.

Work with Emerald [22] has explored more sophisticated techniques such as pass-by-move
and pass-by-visit and found them to be useful. We have developed a generalized marshaling
mechanism based on the notion ofmarshaling descriptors. Used in conjunction with general
Marshaling components, these descriptors givehints as to how an object should be marshaled.
Examples are: reference, cached, shallow/deep copy, replica, etc.

In Tj, an object’s marshaling policies are defined at the meta-level by the component filling
the newly createdMarshaling behaviour. These policy descriptions are an interface to the general
marshaling mechanisms supplied byTj.

CHAPTER 5. TJ 51

Users trade-off flexibility and efficiency by manipulating theMarshaling component. The fully
general mechanism allows the dynamic analysis of object graphs to determine the appropriate
marshaling strategy. At the other extreme, we can specify that a primitive, no-frills strategy be
used. These choices can be precompiled from abstract declarative specifications into efficient
marshaling methods which are used directly.

Below we present the general marshaling framework and the supported marshaling techniques.
Following that, we discuss the setting of marshaling policies and approaches to distributed system
optimization by modifying marshaling strategies.

Every object has a default descriptor (supplied by itsMarshaling) which is used if no other
descriptor is supplied. In general, user-supplied descriptors can override a default however it is
possible to prevent or constrain this. Descriptors are alsodescriptor generatorsin that they produce
descriptors for the various parts of the object whose marshaling they describe.

At the heart of the generalized marshaling mechanism is a generic object graph walker or
marshaler. The marshaler walks object graphs according to a series of marshaling descriptors.
At each object in the graph it invokes the operations specified by corresponding descriptor. The
marshaler maintains the minimum desired, current and maximum desired traversal depths as well
otherglobalinformation such as a marshaled object registry used for cutting cycles. These combine
to give descriptors a global view of the marshaling process for use in determining how to proceed.

The available set of marshaling descriptors is completely extensible and allows users to add
new marshaling techniques in support of new distributed object behaviours. For example, with the
addition of theReplicatedObject model came aReplica descriptor which specifies that an object
be marshaled as a replica. Below is a list of the marshaling descriptors which are part of the basic
system and the object models discussed in this chapter.

Constant Substitute some constant value held by the descriptor for the actual object being mar-
shaled. Marshal the constant according to a descriptor also held internally.

Basic Marshal the object’s instance variables according to its contents’ default descriptor.

Depth Traverse the object graph from the current object to a minimum and maximum depth as
specified by the descriptor. Using this mechanism we can specify an infinite range from
shallow to deep copy.

Slot Specify, on a per-slot basis, descriptors to use in marshaling an object’s slots.

Reference Marshal a global reference to the object.

Cached ReferenceMarshal a global reference such that the first time it is accessed, the reference
is resolved locally according to a descriptor held by the reference. Note that this resolution
descriptor can take any form.

Replica Replicate the object in the receiver’s space. The object is replicated according to a further
descriptor held internally.

Move Move the object to the receiver’s space. The object is moved according to a further descriptor
held internally.

CHAPTER 5. TJ 52

Operation Specify a block of code to be used in marshaling the object. This is the escape mech-
anism which enables arbitrarily complex marshaling.

Use Marshal objects based on manual or automatic code analysis of thereceivingobject’s use
of the objects. This is suitable as a general default because if no analysis information is
available for an object, its self-specified defaults are used.

Attach Specify a set of arbitrary objects to transparently marshal along with the target object.
Also allows the specification of marshaling descriptors for those objects. This effects an
Emerald-like object attachment facility.

Descriptors can be computed or declared. Computed descriptors are often the result of some
analysis process while declared descriptors occur as annotations to messaging operations. A mes-
sage annotated with a declarative marshaling descriptor is shown below. Note that computed and
supplied descriptors are handled in the same way by the system. They are just derived and attached
differently.

For example, the sequence:
someObject <- foo: arg1 {deep} bar: arg2 {replica} sends thefoo:bar: message tosomeObject

and marshals the first argument usingdeep copy. The second argument isreplicated in the receiving
space. In this case it is replicated according to thearg2’s default replication descriptor (see below
for a discussion of replication descriptors). If we wish to specify how the replication will take
place we can specify a further,nested, descriptor such as,{replica: (-3 20)}. This specifies that the
argument is passed as a replica which is a copy of the object graph starting at argument and going
to a minimum of depth 3 and a maximum of depth 20.

This notion of nesting descriptors can be applied in many situations. For example, when using
cached reference marshaling we can also specify a descriptor to be used to resolve the remote
reference when it is located. We may even choose to resolve the reference with a replica (e.g.,
{cached: replica}). Variations on this nesting theme can be as complex as required and can involve
almost any of the descriptors mentioned above.

5.2.3 Marshaling policies and optimization

Optimization of object marshaling has two facets; the mechanism and the policy. As discussed
above,Tj’s generalize marshaling framework allows users to substitute arbitrary marshaling mech-
anisms in a declarative way. These user-defined mechanisms can be as simple or as complex as
required. Users looking to reduce marshaling overhead should analyze their application require-
ments and perhaps replace some objects’ fully generalMarshaling component with one which is
more specific and more efficient. Alternatively, they can continue to use the general mechanism
but declare more specific descriptors to match their situation.

A rich, extensible set of marshaling mechanisms is only part of the answer. We must also be
intelligent about how we determine which mechanism to use for a particular object in a particular
situation. There are a number of ways of determining the best or most effective marshaling strategy.

By default each object follows a strategy determined by some internal property (e.g., class or
type). Tj, like most systems, says that by default objects are passed as references unless they are

CHAPTER 5. TJ 53

immutable, in which case they are passed as values. Clearly this is not sufficient. In the previous
section we detailed how messages can be annotated with marshaling information for its arguments.
These annotations override the defaults for an object. In many cases we have found that specifying
such annotations does not have the expected effect. For example, caching or replicating an object
may result in more remote messages than it eliminates. The problem is that once the object is local
to some other processor it will execute its code on that processor. If that code executed accesses
instance variables which were not made local then a remote message will be required. If this is
done frequently it may outweigh the benefits of having copied the parent object local.

Emerald and other systems address this using the notion ofobject attachment. Under the
attachment mechanism, users explicitly attach objects to one another. When an object is copied,
all of its attached objects are copied. This solution works to a certain degree but does not take into
account use-cases. By modifying the object itself, the attachment mechanism forces the object to
have that behaviour for all uses. We have found that in certain situations we or the system know
that the attached objects will not be required and so need not be copied/replicated/moved.

Use-case specific marshaling is tremendously important in the implementation of both system-
level mechanisms and automatic optimization techniques. When implementing a distributed object
operations (e.g., replication) the use of a particular marshaling strategy can be very important.
These strategies are independent of the user’s view of the object’s marshaling strategy (i.e., the
object’s default). For example, while object attachment is useful for message passing marshaling,
it may not be relevant to replication. The replication mechanism must be able to marshal objects
independent of their implicit or explicit marshaling specifications.

Tj approaches this issue using marshaling descriptors. By modifying an object’sMarshaling,
we change its default marshaling descriptor and effect slot-based attachment. As shown above,
these strategies (i.e., descriptors) can be specified as message send time. The form of an object
under replication, copying, caching, etc. may be different from that of messaging and is specified
with separate defaults and explicit arguments passed to those operations.

The declarative nature of these specifications lends itself to integration with automatic analysis
and optimization techniques. These techniques depend largely on the analysis of particular base-
level sends to determine how parameters and return values should be passed — It is, by definition,
use-case specific. For example, if analysis reveals that a particular object is not used, then we
simply generate aconstant: nil descriptor which marshals it asnil. Since it is not used, its value
does not matter.

Static analysis of the entire Smalltalk class library found that approximately 7% of all arguments
are not used. While many of these represented error conditions (i.e., they would never occur), the
majority were due to polymorphism and specialization. In some cases, methods at the top of an
inheritance hierarchy provide for the specification of certain parameters but due to their general
nature, do not actually use the parameter. They assume that the parameter will be used by an
overriding method. More frequently however, subclass methods ignore arguments required by
superclass methods in favour of some derived or stored value. In both cases, this behaviour is in
an attempt to maintain protocol compatibility and facilitate polymorphism. As such, we expect the
number of unused arguments to increase as class libraries grow.

Analysis may also determine that a particular message’s return value is not used in any sub-
stantial way. We cannot simply say “don’t return a value” because often the return of a value is

CHAPTER 5. TJ 54

used as an indication of operation completion or synchronization. We can however, specify that the
value to be returned should be some trivial object likenil. This will maintain the synchronization
properties of the message while eliminating most of the overhead. The potential gains may be
great. The code of our Smalltalk environment contains some 100,000 message send operations of
which the return values of approximately 27% are not used (in static analysis).

Our work has been with untyped languages like Smalltalk and so our analysis capabilities are
somewhat limited. While even this simple work can be useful, in general, an increase in analysis
detail is accompanied by an increase in precision in the descriptor and thus optimization. Static
analysis with strong-typing can determine a method’s marshaling requirements quite accurately
by looking at its parameter and return value types and references, and examining the call-graph.
Systems like Orca [3, 42] and Munin [5] use such techniques. Unfortunately, even this analysis
can result in sub-optimal marshaling at run-time.

For example, suppose we developed a metric for determining how many times a method ar-
gument is accessed. Using this metric we might suggest that arguments referenced more thanX

times be passed by value or by migration so they are local. On the other hand, at run-time we may
find that one of those arguments is in fact a very large structure and that copying or moving of the
object would be costly. Clearly there is a trade-off. Note that strong typing does not address this
case as the copied size of an object is determined by its typeand its attachments which may be
dynamically determined.

We propose the use of run-timenegotiationwhich would weight the accessing costs against
the copying/movement costs and determine the appropriate action. By negotiation we do not mean
some heavy-weight, multi-iteration conversation between the sender and receiver over the processor
inter-connect channels. We look to the meta-level and see that an object, by giving out a reference to
itself, is projecting a part of itsAccept into the remote space (e.g., theRemoteAccept in figure 5.1).
The sender’sSend component can communicate and cooperate locally with the receiver’s projected
Accept to determine the best communication strategy.

By implementingTj using a rich meta-level environment (i.e., CodA), we expose implementa-
tion information and allow the system to make informed choices. This exposure does not violate
encapsulation because it is the object’s choice to provide information.Tj provides the mechanisms
and framework for using the available information to calculate declarative marshaling specifications
which suit the needs of a particular object interaction. The mechanisms scale to handle a full range
of marshaling descriptors from broad hints to precise forced specifications. These facilities are
much more general and powerful than those seen in any other system. While it would be possible
to add some of them to existing environments without explicit meta-level support, the availability
of the CodA meta-level facilities has made their design and implementation very easy.

5.3 TheMigrantObject model

As discussed in the overview ofTj’s distributed object model, an object’sState andExecution are
independent. As such, the issues related to the migration of their state and execution are somewhat
orthogonal. In fact, since an object’sExecution is just another object, the implementation of its
migration is largely the same as that of base-level objects. To control or define the migration of an

CHAPTER 5. TJ 55

object, we create a new behaviour in the meta-level,Migration.

5.3.1 Computational migration

We do not consider the possibility of a computation (e.g., an object’sExecution) being replicated.
Replication (see Section 5.4) generally implies some level of global consistency.Tj assumes
a MIMD computing model and expects the various copies of an object’sExecution to evolve
independently making global consistency undesirable. An object’sExecution can however, be
copied or migrated to remote spaces in a way similar to the computational migration seen in [17].
Note that an object can haveExecutions in many spaces and still only maintain one version of
its state. This is a direct consequence of the separation of theState andExecution behaviours of
objects and gives rise to the following six possible relationships between versions of an object’s
State and itsExecution:

1 : 0 Normal passive object. This is the default case. Objects have one state location and borrow
threads from their senders.

1 : 1 Normal active object. Objects have one state location and a dedicated thread for their execu-
tion. These may not be co-located.

1 : N Parallel object with single state. Useful where the object makes many accesses to remote
objects and few to itself. Simply copy theExecution to all the relevant spaces and the meth-
ods execute locally. Optional method distribution will result in all copies of theExecution
executing the same method though not necessarily in lock-step. State accesses are serialized
through the one copy of the state.

M : 0 Replicated passive object. Each replica is passive and borrows threads local to its state.
This results in a degree of implicit parallelism. State accesses are controlled according to
the replication consistency model.

M : 1 Replicated active object. Use cases for this may seem somewhat contrived but they are
nonetheless feasible as potential behaviours. Consider the case where a particular object is
large, as is the number of references it does to itself and the objects in any given space. The
object’s execution is such that it processes data in one space discretely and then moves to the
next. In this case, it may be more efficient to replicate the state once in each space. Then
we can avoid the iterative state migration and execution synchronization cost by migrating a
singleExecution among the replica.

M : N Replicated parallel object. This is a mixture of the above models.

Methods for an object executing remotely are such that the receiver (i.e., self) is a
RemoteReference to the object which is the master copy of the object’s state. All instance variable
accesses are converted to remote message sends to the nearest space which maintains state for
the object. Depending on how theExecution was created, the local version of the object may also

CHAPTER 5. TJ 56

maintain local versions of the object’s other meta-components such that some messages are handled
locally.

Tj does not support full thread migration in the sense that arbitrary threads cannot be migrated
at arbitrary points in time. There is no design limitation imposing this restriction, it has yet to be
implemented. As it is, migration (and in fact copying) can only be done on message processing
boundaries. Basically this is to avoid the need to copy and recreate arbitrary portions of the stack.
Since we are on a message boundary, we can simply construct the appropriate stack base for the
execution in the new space. There are some outstanding technical issues relating to the migration
of active objects which will be addressed in future work as the need arises.

5.3.2 State migration

The mechanisms forState migration are quite similar to those for replication. Migration does not
place any “after operation demands” on the originating space other than the need for a migrated
object location mechanism [14]. Migration is essentially a copy operation followed by a global
pointer update.

As with replication, objects are migrated according to the slot specifications given in a sup-
plied migration descriptor. Migration descriptors are derived from replication descriptors. In the
implementation they are simply the marshaling descriptor used to marshal the object when it is
moved to its new location. As such, objects and their slots can be migrated in almost any form.
For example, specifyingmigration for a particular slot effects an Emerald-like attachment. Using
a cached referencewill copy/migrate/replicate an object only if it is accessed in the remote space.
Note also that an object can be passed as a migrant. That is, a mechanism similar to Emerald’s
pass-by-move is implemented by using themigrate marshaling descriptor with a message.

There are also issues related to the threads executing in an object when it is migrated. By in
large, these are handled by the local object replacement mechanism. When an object’s state is
migrated, the local version of the object is replaced by a remote reference to the object in its new
location. As such, any references or messages to the object will be forwarded to its new location.

In addition to specifying the form of the migration, theMigration also defines the policies
for migration. For example, where and when the object is to be migrated. In many cases, the
user/programmer mayhint that an object should be migrated. Say in a parameter passing marshal
descriptor. It is then up to the parameter object’sMigration to provide additional information (e.g.,
cost, size, complexity) in support of the parameter passing negotiation techniques discussed above.
This is also true ofReplications.

5.4 TheReplicatedObject model

When an object’s state is replicated, themaster(the original) is copied to one or more remote
spaces creating a number ofclients. The master’s meta-level is modified such that state changes
are trapped by theReplication component. Replication is in fact independent of state form and
can accommodate radically different representations in different spaces.Replication components
themselves are quite simple.

CHAPTER 5. TJ 57

The master’sReplication maintains a list of spaces which contain replica. On state change,
it coordinates with those spaces to update the clients according to some consistency model. The
clients’ meta-levels contain a counterpartReplication component which has agreed to an update
protocol and knows the identity of the master object. Depending on the consistency model, state
reads are also routed through theReplication.

The replication model for an object is specified via a descriptor. Replication descriptors are de-
rived from the marshaling descriptors discussed in Section 5.2.2. In short, the replication descriptor
is the marshaling descriptor used for the argument to theupdate: message which is invoked when
a replicated object is modified. They also contain information related to multicast and master-only
messages as discussed below.

TheReplicatedObject model also extends the set of available marshaling descriptors. Readers
of Section 5.2.2 will note the presence of aReplicamarshaling descriptor in the list of available
marshaling descriptors. This in combination with the uniform descriptor mechanism admits the
following possibilities:

• Parameter passing by replication. This is a novel mechanism in which the argument is copied
with an indication that when it is received in a space, it should report back to the master for
consistency management.

• Varying consistency models by slot. Allowing different consistency models recognizes the
fact that objects may have different use patterns from application to application and that the
demands they place on their state variables may not be homogeneous.

• Slot form specification. While the consistency model describes how and when replica are
updated, specifying the form is directly analogous specifying the object marshaling descriptor
used when updating a remote value. In message passing, a use-case may demand that a
particular slot of an object be passed in a certain form (e.g., copied to a particular depth).
In replication we may encounter the same use-case and would expect that slot of the object
be replicated, in this case, as a copy to a particular depth. Here we allow the full range of
marshaling mechanisms for use in specifying remote slot form. Replicated slots can even be
updated by further replicating the value in the slot!

5.4.1 Replication example

To demonstrate replication we develop the partial replication scenario shown in Figure 5.2. The
figure shows two objects,original (in space 0) andreplica (in space 1). Though not shown,original
is actually a 2D N-Body [4] problem solver which calculates the forces exerted by, and movements
of, a collection of bodies orparticlesin a 2D plane. N-Body solvers arrange a set of particles in a
Quad tree structure according to their physical location and then process each particle individually.
Overall, processing consists of a couple tree scans and iterations over the collection of particles.
Readers are referred to Section 7.1 for a more detailed discussion of this application.

To distribute this algorithm we divide the particles into subsets which are worked by different
solvers, one per space. The sets however, are not entirely independent as all particles potentially

CHAPTER 5. TJ 58

original
tree

particles

replica
tree

particles

Default meta-
components

Default meta-
components

Space 0 Space 1

Master
Replication

replicas

Slave
Replication

master

local
local

remote
...

Accept

Figure 5.2: Distributed object layout

exert forces on all others. The tree is the central data structure for relating particles to one another
and must be globally known and unique. The solver is a prime candidate for partial replication.

As shown in Figure 5.2,original, the solver, has two slots;particles andtree. replica is a partial
replica oforiginal where thetree slot is consistency managed and theparticles slot is not. All the
replicas in the system share the same tree but have independent particle sets. The replication of
original is done in a series of six steps. Figure 5.3 shows the required code while the discussion
below explains each step.

1. Ensure that theoriginal’s Replication compatible with the behaviour described by the
MasterReplication component. It should be able to detect state changes in the appropri-
ate slots and maintain a list ofreplicas. The first argument is a marshaling descriptor which
specifies how the slots oforiginal are to be copied to the remote space and as a result, how
original is to be replicated. Simply giving a slot name indicates that the slot is to be replicated
using whatever marshaling technique is appropriate at the time (i.e., the default).

2. Invoke the replication operation and specify which spaces are to receive replica. In keeping
with our example, only space 1 is specified.

3. Copy the relevant slots oforiginal to all of the specified spaces. Thereplicate:using:for:
message has three arguments. Though the first and third appear redundant, they are not —
they are marshaled differently. The first argument is marshaled according to the specification
in descriptor while the third is marshaled as a reference. This difference is critical for the
next two steps. When the message gets to the remote space, the first and third arguments will

CHAPTER 5. TJ 59

1) original meta replication asMasterUsing: #(’tree’) for: original.
2) original meta replication replicateIn: (Spaces at: 1) for: original

MasterReplication»replicateIn: space for: base
3) space replicate: base using: descriptor for: base.
6) replicaSpaces add: space

Space»replicate: copy using: descriptor for: master
4) copy meta replication asClientOf: master using: descriptor for: copy.
5) master become: copy

Figure 5.3: The making of a replica

no longer be identical. The first will be a copy ofbase while the third will be a reference
to base. Note that though marshaling descriptor specification is a simple addition to the
messaging syntax, the details are omitted from this example to improve clarity.

4. Make the remote copy into aclient of original. This is similar to step 1 and executes in the
remote space which will containreplica. copy’s meta-level is modified such that all state
changes are delegated tomaster and theReplication knows the identity of itsmaster for future
reference.

5. Convert any preexisting remote references tooriginal to be local references toreplica. Remote
spaces may contain references tomaster prior to replication. To maintain a consistent view
of the world, these remote references should be changed into local references to the newly
created replica.

6. Invoke consistency management on the replicated slots oforiginal by adding the space to the
list of consistency controlled replica locations.

In step 1 we hooked the relevant state change operations fororiginal. Note that we do not
require a newState component. The existing component’s meta-level is manipulated to hook state
accesses. This both isolates replication from representation and reduces the possibility of object
model conflict. Whenoriginal’s replicated state is changed, itsReplication’s update:with:for method
(shown below) is invoked by the hook. The method simply broadcasts the change inslot to all of
original’s clients.

MasterReplication»update: slot with: value for: base
replicaSpaces do: [:space | | rep |

rep := (base in: space).
rep meta replication update: slot with: value for: rep]

In this example we have shown a relatively lax model of consistency. To implementstrict
consistencyrequires only the addition of a two phase update protocol between masters and clients

CHAPTER 5. TJ 60

and the hooking or delegation of both read and write state accesses on masters and clients rather
than just writes. Both of these changes are straightforward and are done using existing meta-level
structures and mechanisms.

5.5 Implementation

The current version ofTj is implemented in Smalltalk and runs on the Fujitsu AP1000 MPP machine
[38] with up to 1024 nodes. It also runs on clusters of Sun workstations using MPI messaging. All
of the mechanisms and models described here are implemented and running with several more in
the design and implementation stage. On all platforms we use a third party messaging package to
implement message passing between object spaces. The AP1000 implementation uses the Fujitsu
CellOS messaging library and the workstation version uses an implementation of MPI.

While layering gives us portability and flexibility, it also has some affects on performance. In
the case of CellOS and MPI, the messaging libraries copy incoming messages before the user can
read them. Furthermore, since we allow concurrent receipt and unmarshaling of messages, we
have to copy the message buffer once again before the objects it contains are reconstructed. The
situation is similar on message sending. The net result is four more copying operations than may
be strictly necessary. A more optimized implementation could eliminate some or all of these.

Another problem has to do the lack of interrupt driven messaging and timer interrupts. The
messaging libraries do not provide interrupt driven messaging so we must poll the incoming mes-
sage queues for new messages. Unfortunately, the AP1000’s basic OS also does not provide timer
interrupts so it is difficult to develop any sort of regular polling mechanism. The current imple-
mentation simply polls the message queue when there is nothing else to do (i.e., when idling). This
works in practice but can lead to unnatural event (i.e., execution) ordering since incoming messages
do not get into their receiver’s message queue untilall objects on the processor are idling. We can
adjust priorities to reduce this problem somewhat but cannot eliminate it.

The addition of a timer interrupt as is available on the workstation version ofTj gives us
regular polling but still limits responsiveness to, in the worst case, the polling period. On common
workstations the fastest interrupts are 1ms. Future versions of theTj messaging system will be
more tightly coupled with the underlying system and improve latency.

The current system is unique in that it is the only implementation of an industrial grade, pure
object-oriented language on an MPP class machine. The implementation ofTj in Smalltalk on this
class of machine (i.e., MPP) is quite interesting and novel in and of itself. Our implementation
gives users full access to all of Smalltalk’s development tools including advanced configuration
and version management utilities. They AP1000’s front-end processor is integrated into the cell
topology. Objects in cells and the front-end can directly reference each other and communicate
transparently. Users are presented with a graphical front-end to the AP1000 cell array and can
browse the executing code and inspect the resident objects. There is also basic support for remote
debugging (e.g., stepping of remote processes).

The only other implementation similar to this is Hewlett-Packard’s Distributed Smalltalk[16].
HPDST is implemented on ParcPlace Systems’ VisualWorks system and runs on clusters of work-
stations. Fundamentally it is an implementation of the CORBA [31] distributed object system.

CHAPTER 5. TJ 61

While it is an interesting system, it is based on a somewhat restrictive object model and does not
include a general framework for meta-level computing or sophisticated marshaling etc. CORBA
objects are relatively coarse-grained and heavy-weight.

5.6 Summary

We have detailed the various object models inTj, our distributed object system. They go together
to form a comprehensive distributed environment suitable for prototyping applications and experi-
menting with distribution mechanisms. In the distributed computing domain,Tj’s capabilities rival
those of dedicated distributed systems like Emerald.Tj however, a retains and makes available to
the programmer, the full power of the CodA architecture. Users take advantage of this to describe
new behaviours which better suit their situation.

Tj provides a powerful and extensible framework for describing object marshaling on a per-
object, per-object-group and per-use basis. Our model of marshaling descriptors presents the
user/programmer with a single, clear and consistent model of inter-space object transport specifi-
cation. The descriptors are used both for object marshaling and mobility operations (e.g., replication
and migration). They are uniform and recursive.

Overall,Tj addresses problems related to introducing distribution to systems which previously
had none and in the description of complex distributed object behaviour. The framework itself
is robust and extensible. Future work in this area will be directed at the addition of distribution
mechanisms (e.g., new replica coherency strategies) and automatic analysis of application code to
direct the use of distributed mechanisms such as marshaling.

Tj is based on the idea of object behaviour change at the meta-level. It uses the CodA meta-level
architecture to open the implementation of objects and provides a framework for the description
of sophisticated distribution mechanisms (e.g., replication). The clear separation of base- and
meta-levels facilitates the distribution of objects which were never intended to be distributed. With
the CodA architecture users have a solid foundation for describing detailed policies for the use of
distribution. They also have access to mechanisms for the control of the concurrency implicitly
added with the distribution.

As we demonstrate in Chapter 7, the addition of distribution requires very little change at
the base-level. As such, programmers can reuse entire class libraries and experiment with quite
different distribution models without major concern for base-level behaviour.

This is in contrast to dedicated distributed systems like Emerald where users are forced to use
the Emerald language and environment for which there is little existing software. It also changes the
programmer’s mindset. They are no longer programming adistributedsystem, but rather a system
which mayrun in a distributed environment. We do not claim that programmers can completely
ignore the rigors of distributed computing do claim that using a solid meta-level architecture give
them an explicit place to describe how their objects should behave in that environment.

Our work is quite close to that of the Apertos team. The Apertos operating system differs
mainly as a result of a different target domain than of the overall architecture. Apertos reifies
aspects of object behaviour at the operating system level (e.g., memory management, page faults
and device drivers). This level is mostly orthogonal to the current CodA meta-components. It

CHAPTER 5. TJ 62

would be interesting to combine the two domains in one framework to get a more complete and
far-reaching reification of object behaviour.

Chapter 6

CodA implementation and use

We have implemented the CodA meta-level architecture in Smalltalk. This chapter gives the reader
a look “under the hood” of CodA and will be of interest to users wishing to fully utilize or extend its
capabilities. Typical programmers however, need not be familiar with all of this information to use
CodA effectively. While we detail the Smalltalk implementation, readers are reminded that CodA
is by-in-large independent of implementation language specifics. In general, CodA objects adopt
as many of the properties of their host object system as possible. So, when we talk about CodA
objects having some property, we are typically referring to CodA objects in the host environment
(e.g., Smalltalk).

A key point of the implementation is that we transparently add CodA’s capabilities to normal
Smalltalk objects. This gives users full access to Smalltalk tools and class libraries, and gives
Smalltalk objects full access to the flexibility and power of CodA. The high degree of integration
achieved is possible largely because CodA deals with the runtime or operational behaviour of
individual objects. It is orthogonal to language issues such as classes and inheritance. By separating
these concerns we minimize the changes required to the host environment and improve CodA’s
integration.

While the normal Smalltalk object system is quite open, modification of the behaviours defined
in the VM are often difficult if not impossible. CodA seeks to provide what might be called an
object engine. That is, to provide the notion ofobjectand a framework for defining the precise
executional behaviour of these objects. Though CodA objects havedefaultbehaviours, most can
be explicitly modified.

Another key point of the implementation is that reification is transparently introduced and only
incurs overhead where it is used. Reification of one object or operation does affect others either
in behaviour or performance. Fundamental in this is the use of the Smalltalk virtual machine
(VM) wherever possible. For each Smalltalk object we enable the lazy and transparent addition
of meta-level infrastructure and default meta-components (i.e., the conversion to a CodA object).
The default components describe the standard Smalltalk object model. That is, a standard CodA
object behaves just like a standard environment (e.g., Smalltalk) object.

In addition, the Smalltalk implementation has resulted in a number of unique and interesting
implementation techniques and mechanisms. These include a novel solution to the object identity
problem commonly encountered when trying to reify operations which are not explicit in the basic

63

CHAPTER 6. CODA IMPLEMENTATION AND USE 64

Smalltalk system (e.g., message sending).
Since CodA and Smalltalk objects are almost completely interchangeable, the Smalltalk class

library can be directly (re)used by CodA programmers. The capabilities of Smalltalk and CodA ob-
jects are however, substantially different. User’s wishing to utilize CodA’s flexible object structure
must be aware of the differences and interactions between the object systems.

The most fundamental difference between Smalltalk and CodA is in how they treat classes. In
Smalltalk an object’s behaviour is defined by its class and the Smalltalk virtual machine. Classes
define the object structure (i.e., the number and type of instance variables) and the methods to which
instances respond. A class’ location in the class hierarchy implicitly defines how methods are found
(i.e., which classes are searched). The virtual machine (VM) defines all other object behaviours.
These include how methods are executed, messages sent and instance variables arranged and stored
in physical memory.

In CodA, an object need not have a class as such and if it does, the class generally provides
only the default meta-components for the object. The CodA framework essentially opens both the
class and VM portions of the Smalltalk object model1. Implicit in this departure from class-based
objects is the ability to have object-specific behaviour. All Smalltalk objects of the same class
behave in exactly the same way. They respond to the same messages, have same structure and
handle messages in the same way. CodA allows the use of both class-based and prototype-based
object definition techniques.

The next difference is the provision of arbitrary method resolution techniques. Smalltalk uses
a single inheritance model where only classes are searched for messages applicable to a particular
message. While the default behaviour of CodA objects is similar, users can explicitly define
their own message/method resolution strategy. For example, multiple inheritance, state-based
availability searching, double dispatching, etc.

Also embedded in the Smalltalk VM is the way in which messages are passed. Since Smalltalk
is fundamentally a sequential system, the definition of message passing need not be sophisticated.
Simple blocking synchronous sends are sufficient. Similarly, all objects are reactive. They are
implicitly in an endless loop waiting for some other object to send them a message which they
will process. The introduction of concurrency and distribution draws both of these behaviours into
question. We require the ability to specify message types (e.g., synchronous, asynchronous, future,
etc.) as well as how, why and when messages are received and processed.

As mentioned above, CodA takes lazy and partial approach to meta-level reification. While
eventually all executionbottoms-outin the virtual machine, reifying a meta-component inserts
another layer between the user code and the VM. In contrast to the interpreter approach, thispushing
awayof the underlying implementation platform (i.e., the VM) adds overhead to a restricted portion
of the base-object’s execution.

While the Smalltalk meta-level is implicitly defined in an object’s class and the VM, a CodA
object’s meta-level is explicit. It is implemented as a concrete set of objects which are accessible
and manipulable. As we saw in Section 3.5, the starting point for meta-level access is the object’s
meta. In general, users should not store or otherwise reference an object’smeta directly. The actual
object accessed usingmeta may be different from call to call. Rather, themeta message should be

1It could be said that since CodA is implemented in Smalltalk, then in fact, Smalltalk is not all that closed. This
is of course true however CodA provides a framework or infrastructure for change where none existed in Smalltalk.

CHAPTER 6. CODA IMPLEMENTATION AND USE 65

viewed as marking a level or viewpoint shift.
Once execution has shifted to the meta-level (i.e,. having executedanObject meta), program-

mers have access to the meta-components which defineanObject’s behaviour. There can be any
number of meta-components related to a specific meta-level. By default, allmetas have some defi-
nition for the standard behaviours as defined in Section 3.4. Some meta-levels arefixedin that they
allow no changes or additions to this set. Others arechangeableand allow existing components to
be replaced. Still others areextensiblesuch that entirely new behaviours and components can be
added and existing ones changed.

6.1 Implementation strategy

As discussed in Chapter 3 and shown in Figure 6.1, there are two major elements in the CodA
architecture, themeta and the components. Every object has ameta and a collection of components
which describe its behaviour. An object’smeta groups and organizes these components. In general,
users do not need to explicitly program or manipulate themetas other than installing and removing
component definitions. Components can be any object which responds to the interface protocol
prescribed by the behaviour which it implements. So, as long as an object can do the job, it can be
used as a meta-component.

A

Accept Receive

A meta

Protocol

CodAMeta

CodAMetacomponent...

Object...

Figure 6.1: Meta-level structure

Figure 6.2 shows the developed class hierarchy for the major parts of the CodA meta-level. The
italic classes are those which are part of the normal Smalltalk system. All others are unique to the
implementation of CodA. These concepts and classes are detailed in the following two sections.

CHAPTER 6. CODA IMPLEMENTATION AND USE 66

Object
Behavior

Class
CodAAbstractMeta

CodAMeta
CodAMetacomponent

CodAAccept
CodAProtocol
CodAReceive
...

Figure 6.2: The CodA meta-level class hierarchy

6.2 Per-object meta-levels

To implement CodA’s per-object meta-level definitions, we must be able to associate different
behaviour descriptions (i.e., meta-levels) with different objects. In essence, we would like to
associate ameta slot with every object. Unfortunately, Smalltalk does not directly support the
runtime addition of slots to objects. There are four techniques which we can use to associate a
meta with an individual object:

1. Have a global table which maps from object tometa.

2. Require CodA objects to be created as instances of classes which have ameta instance
variable.

3. Use Encapsulators [35] or forwarders to ‘wrap’ normal Smalltalk objects with something
indicating theirmeta.

4. Somehow embed themeta in the current object structure.

The first three options have severe limitations. The first requires the maintenance of a potentially
huge table and extra overhead for everymeta access. The second goes counter to our goal of reusing
objects from the regular Smalltalk class library as CodA objects.

The third option, Encapsulators, has been a popular solution but suffers from theobject identity
problem. Stated briefly, the object identity problem occurs when one object has two addresses; that
of the encapsulator and that of the actual object. As long as the encapsulator adds no semantic value
to its target (i.e., it really just forwardsall messages), this option is feasible. If the encapsulator
doesanythingelse, we have an identity problem: Users of one address will get different behaviour
than users of the other. This is despite the two addresses representing the same logical object.

Consider the example in Figure 6.3. Here we see some objectO with an associatedEncapsulator
E. In the example,E is not just a forwarder. It somehow transforms all incomingbar messages
into foo messages and then pass them toO. Messages other thanfoo are passed on unchanged.

CHAPTER 6. CODA IMPLEMENTATION AND USE 67

foo
’bar’ output.
^self

’foo’ output.
^self

bar

foo
^realSelf bar

O

E

A

E bar bar ’bar’ ’bar’
E foo foo ’bar’ ’foo’

lo
gic

al
po

int
er to

O

Figure 6.3: The object-identity problem

SinceE encapsulatesO, all objects which logically refer toO should actually refer toE. As long
as this relation is maintained, everything is fine. All uses ofO (i.e.,E) will give consistent results.
Unfortunately, the relationship is easily broken andE’s true identity (i.e.,O) can leak out.

The figure showsO ’s methodbar which outputs some string and returnsself. ExecutingE bar
bar causes this string to be output twice.O also has afoo method which outputs a different string.
ExecutingE foo foo causesbar’s string to be output followed byfoo’s string. This is not what we
expect since bothfoo andbar are defined as returningself. The behaviour is different because the
first foo is intercepted byE and transformed into abar message (as per the desired behaviour ofE).
O ’s bar method returnsself which isO when the method is executed. The secondfoo message is
sent to the result of the first (i.e.,O). As a result,E is by-passed and the message is not transformed
— The behaviour is inconsistent.

This specific example is indicative of the general problem. While it is theoretically possible to
scan return values and substituteEs forOs, in practice, it is impossible for two reasons. First, return
values can be arbitrarily complex and references toO may be nested arbitrarily deeply. Scanning
the entire reachable world from the return value is impractical. Even if this scanning were done, it
is impossible to tell whichOs should actually beEs! There may exist some legitimate references
to O.

The only remaining option is to add a new slot to hold the reified meta-level. It is impractical
to blindly add this slot to all objects since only some will actually havemetas and Smalltalk does
not support the dynamic addition of slots to individual objects. So, rather than adding a new slot,
we approach the problem differently and reuse an existing slot.

Every Smalltalk object has an implicitclassField slot which holds its class. So, in fact this slot
already contains the object’s meta-level — its Smalltalk meta-level. Since the slot is embedded in
the object structure and is never changed in the normal course of events, it is a perfect candidate
for reuse. The slot is reused by replacing its original value with a object which mimics the original
but adds new properties. In this case, the new object should point to the original class and be, or
point to, the new CodAmeta. Since the object in theclassField is used directly by the VM, it must
adhere to certain guidelines:

CHAPTER 6. CODA IMPLEMENTATION AND USE 68

• Every object has a built-in class field called theclassField. The VM uses the value in the
classField to to lookup message selectors and find methods to execute and to determine the
object’s layout in memory (size, instance variable format etc.).

• The value in an object’sclassField must accurately describe the physical structure of the
object as this information is used by the garbage collector when traversing objects. If the
information is incorrect, a VM has little choice but to crash immediately in a most unpleasant
way.

• Classes are not special or magic objects. They are instances of a subclass of Behavior. They
have the peculiar property that they describe other objects. That is, they are at the meta-level.

• If an object’sclassField is changed, only that object is affected. Modifying the object
contained in an object’sclassField however, affects all objects which also have that object in
their classField (i.e., the other ‘instances’ of that ‘class’).

• It does not make sense to change theclassField to some random class even if the structures
are the same. For example,Associations andPoints both have two named instance variables
(i.e., the same structure) but the information they contain or represent is vastly different.

• Since the structure of an object cannot be changed once the object is created, changing the
object’sclassField really only changes the methods to which it responds. Instance specific
state can be added via indirect references through theclassField.

All of these points are addressed if the object substituted (i.e., themeta) is an instance of
Behavior or one of its subclasses2. When a custommeta is installed on a standard Smalltalk object,
it generally should not override all of the methods defined by the object’s class. By making themeta
(an instance of a subclass ofBehavior) be a subclass of the original class, the object automatically
inherits all of its original methods from its original class.

Readers should take special care not to confuse the meta of an object with its class.They
are not necessarily the same!It is simply an implementation detail thatmetas are stored in the
spot normally reserved for classes and implemented as instances as subclasses ofBehavior. CodA
objects need not have any class (in the Smalltalk sense) at all. Having said that, by default, an
object’s class is itsmeta.

By implementing inBehavior, all of the methods normally associated withmetas, classes are
made to act asmetas. Every object automatically has a defaultmeta, its class, and is integrated
into the CodA environment. Having done this, system-wide changes in behaviour are made by
modifying themeta-related parts ofBehavior. Class- and subclass-wide changes are done by
modifying individual classes, and object-specific changes by creating a newmeta and substituting
it for the default as outlined above. Figure 6.4 shows a before-and-after view of dynamic meta-level
reification. The procedure for effecting this transformation is as follows:

2Interestingly, it was to support techniques such as this that theBehavior class exists [12] but few people have
put it to such use.

CHAPTER 6. CODA IMPLEMENTATION AND USE 69

Subclass of

Instance of

Component of

Reify Meta-level

classField

<class>

<superclass>
<class>

class

Before

base-level object

classField

<superclass>
<class>

class

meta

<class>
CodAMeta

After

base-level object

Figure 6.4: Dynamic reification of themeta

1. Find/create an instance of a subclass ofBehavior which has the desired properties. This
object will be the newmeta.

2. Set the newmeta’s housekeeping fields (e.g., object structure description) to be the same as
the object’s currentmeta.

3. Set the newmeta’s superclass slot to be the object’s class. Note that even though we are
technically modifying the object’s ‘class’ we take care to preserve the semantics of theclass
method. Soclass will always return the class of which the receiver is logically an instance
rather than just the contents of theclassField. This makes the substitution transparent to all
clients of the object except for a few VM primitives which directly access theclassField of
objects (e.g.,allInstances).

4. Modify the object’sclassField to contain the newmeta.

5. Add component(s) to themeta and thus override the defaults for the object.

Assuming an emptymeta is used, the result of the substitution is an object which has identical
behaviour to the original, but now has a unique place in which to hold and modify behaviour. The
newmeta is inserted in the class/superclass chain between the instance and the original class. As
such, the standard VM method lookup technique will look in themeta before it looks in the original
class. This allows us to modify the normal methods of the object but leave its class, superclass and

CHAPTER 6. CODA IMPLEMENTATION AND USE 70

other instances of those classes untouched. If the behaviour to be added or changed via themeta
is the form of new or changed methods, the change can be embedded directly in themeta and used
directly by the VM. This eliminates all of the mechanical overhead.

Figure 6.5 shows an example of an object whose behaviour is defined by system-, class- and
object-specific meta-components. The object’sclassField points to itsmeta which contains three
meta-components. These components are logically specific to the object. Themeta is implemented
as a subclass (actually a sub-Behavior) of the object’s real class. Searches for meta-components
which are not satisfied in themeta, move on and look in the object’s original class. In the figure,
the object’s class specifies a further two components. These are potentially shared by all instances
of the class (and its subclasses). Finally, any meta-components not defined by themeta or the class
(and its superclasses) are defined byBehavior. These are global to the entire system.

Behavior

meta

<class>

System
wide

Class
wide

Object
specific

base-level object

Figure 6.5: Implementation of the meta-level

6.3 Behaviours and meta-components

CodA defines an architecture for managing object behaviour descriptions. Object behaviours are
described by meta-components. Components are generally, though not necessarily, subclasses of
CodAMetacomponent. This abstract class supports a number of infrastructure methods for the
installation, initialization and configuration of components. Behaviours are named and logically
distinct though they may coincide in the implementation. That is, one meta-component can de-
scribe several different object behaviours. This logical distinction allows meta-level designers

CHAPTER 6. CODA IMPLEMENTATION AND USE 71

more flexibility because meta-level programmers explicitly state the context in which they wish to
compute.

Just asmeta signifies a shift to the meta-level, specifying a behaviour (e.g.,Queue) identifies
the part of the meta-level which is of interest. In more concrete terms, the expressionanObject meta
queue answers an object which describes theQueue related behaviour ofanObjectand responds
to all the messages expected ofQueues (i.e., theQueue meta-component). Itmayhappen that this
object also describes some other behaviours (e.g.,anObject’s Receive), but this is in general neither
apparent nor of interest to the base-level user.

An object’s meta-components are accessed using ameta notation. For example, the following
code accessesanObject’s State: anObject meta state. The methodstate is really just a convenience
method and is equivalent to the more general:anObject meta componentAt: State for: anObject.
Analogous methods exist for setting a particular meta-component of an object.

6.3.1 Changing behaviours

Since every object’s defaultmeta is its class, system wide default values for each component are
set in the classBehavior3. Changing one of these components changes that behaviour for all CodA
objects in the system which do not override the defaults. Individual classes override the system
defaults by providing their own definitions. For example, CodA’sFuture objects redefine the default
Accept component to be one which suspends the sender until a value is given to the receiver. To
override the system default, a class redefines the component accessing method. How the method is
overridden depends on how the default component is defined. TheFuture class, for example, defines
a new class instance variabledefaultAccept which is initialized with aFutureAccept component on
system startup. The methodFuture class�CodAAcceptComponent simply answers the value in
defaultAccept.

Individual objects override their class and system defaults by instantiating an explicit meta-level
and setting the appropriate components. As discussed above, the meta-level is instantiated using
theBehavior�asExtendibleMetaFor: method. This creates and installs an instance of the object’s
default explicit meta-level object. By default, this is an instance ofCodAMeta. The object is then
free to change or add any meta-component is chooses using themeta interface. For example, the
following code installsmyComponent as the definition ofanObject’s State behaviour:

anObject meta componentAt: State put: myComponent for: anObject
Components installed using this protocol are automatically (un)initialized and their shared resources
properly handled.

There are relatively few restrictions on how meta-components are created and used. Defini-
tions for particular behaviours are shared by arranging for the behaviour accessing method (e.g.,
CodAAcceptComponent) for several objects to return the same component. This is seen with the
default components. Note that some components maintain a strict 1:1 relation with the base-level
they represent and so cannot be shared. In other cases, components must be created dynamically
for each reference (see Section 5.1.2 for an example). Programmers should be careful not to make
assumptions about meta-component stability from one call to the next as the actual component
accessed may be different in each case.

3All classes are instances ofBehavior soBehavior’s instance methods appear as normal class’ class methods.

CHAPTER 6. CODA IMPLEMENTATION AND USE 72

6.3.2 Adding behaviours

Adding entirely new behaviours to the framework is straightforward. First the user must create and
install a name for the new behaviour. This is just a entry in a system table. Next they should create
at least one object which will be the behaviour’s description (i.e., a meta-component). Frequently
two different definitions are required. One as the default for the general use and compatibility of
all objects, and another which defines the user’s new mechanisms.

If the behaviour is to be installed on all objects, then an accessing method (e.g.,
CodAMyBehaviourComponent) must be added toBehavior. As shown in Figure 6.5, this makes
the component available to all objects. The method should return an instance of the behaviour’s
default description. Analogously, if the behaviour is class specific then this method should go in
the appropriate places in the class hierarchy. Instance specific behaviours are installed directly
on themeta of the object in question using a procedure similar to that for changing the value of
existing behaviours.

6.4 Messaging

We have reified themeta in an integrated way but still have to enable its use. Since all Smalltalk
execution is via message passing, we can hook the basic execution of Smalltalk objects via the
message passing mechanisms. Message passing in Smalltalk is implicit. For CodA we would like
to explicitly control both the sending and arrival of messages. The typical technique for doing this is
retro-reification— Instrument receivers to trap incoming messages and then reinvoke a reified send
operation from the original sender. Trapping is usually accomplished using thedoesNotUnderstand:
method in an object which is an instance of a subclass of nil (so it does not understand any/many
messages). CodA supports this but in a slightly different way.

We introduce the notion of aninterceptor. An interceptor is aBehavior which sits between the
object and its real class and so is automatically searched by the VM on every incoming message.
Note that interceptors are distinct frommetas even though they use a similar mechanism (i.e., they
are stored it the object’sclassField).

Using the interceptor we can transparently and individually trap messages. If the interceptor
defines no methods and is a subclass of nil then all messages to the intercepted object are trapped or
reified (seeCodAMeta�reifyAllMessages). Alternatively, we can install special trapping methods
for individual selectors (seeCodAMeta�reifyMessage:to: and related methods). By default meth-
ods arenotautomatically trapped and programmers must explicitly state which incoming messages
they want reified. Some object models (e.g., concurrent objects) provide infrastructure for declar-
atively stating which messages should be reified (seeBehavior�CodApublicMethods) but this is
not true of all models.

6.4.1 Message sending reification

Retroactively reifying messages at the receiver is insufficient. It does not allow us to specify different
forms of message sending or to reify messages to objects which have no installed interceptors. In
this case we want to directly invoke the sending object’sSend operations as detailed in Section 3.4.1.

CHAPTER 6. CODA IMPLEMENTATION AND USE 73

For example, ifmessage is some message we created then we can send it toanObject using the
anObject meta send send: message for: anObject operation. There are a number of send operations
from which to choose. Using this facility, message senders explicitly state the nature of the operation
rather than depending on message receivers to ask how they would like the message transmitted.

This raw messaging syntax is not very convenient for users as it requires that they have an actual
message object. Unfortunately, messages are not automatically reified, but are embedded in the
system, making their creation somewhat cumbersome. In addition, the change in syntax of such a
fundamental element of the underlying system, while functional, may have severe consequences.
It is overly verbose, exposes too much of the underlying infrastructure, requires too much of the
programmer and obscures the semantic content of the user’s code with syntactic requirements of
the environment. Furthermore, it makes CodA code look quite different from Smalltalk code.

Integrating the new operations into the language syntax is a better approach. Table 6.1 gives a
set of ABCL-like equivalents for the CodASend operations. Using this syntax theanObject meta
send send: message for: anObject specification becomesanObject <- message. This is much
clearer and more convenient.

Short-form Long form

<- send:for:
<> sendSync:for:
|| sendAsync:for:
« sendFuture:for:

Table 6.1: Message sending forms

There is still one problem, the creation of the message object which is the argument to the send
operation. As we have said, messages are embedded in the underlying system, not automatically
reified. We could modify the compiler to reify the messages specified after one of our special send
operations but this involves the modification the underlying system, something we wish to avoid
where possible. It is also not very extensible. New messaging concepts are not easily integrated as
they will require further compiler modifications.

Instead, we use a dynamic technique involvingmessage builders. A message builder is an
object which dynamically creates and returns message objects. In fact, the VM itself acts as
an implicit message builder when it invokes thedoesNotUnderstand: method. The argument to
this method is an explicit message object which represents the implicit message which was not
understood. The VM has taken an implicit message and built a message object. Leveraging this,
we can build message builders for our own purposes. A trivial message builder is just an object
which understands only thedoesNotUnderstand: message and implements it as shown below.

doesNotUnderstand: message
^message

If the message builder is calledM then the expressionM at: 1 put: 69 returns a message object
whoseselector is at:put: andarguments is #(1 69). This message can then be used in the typical

CHAPTER 6. CODA IMPLEMENTATION AND USE 74

send operations. Due to a quirk in Smalltalk we cannot embed objects likeM directly in methods
(as would happen with this expression) because they do not respond to typicalObject methods used
by the system. SoM is actually a message builder builder (i.e., class) and will return an instance
of itself in response to theb message. Message reification now takes the form:M b at: 1 put: 69.
Combining this with the sending short-forms we have:

anObject <- (M b at: 1 put: 69)

Not quite perfect but a big improvement over the fully manual version which looks like:

message := self meta send
buildMessage: #at:put:
withArguments: #(1 69)
to: anObject
from: self.

self meta send send: message for: self

Note that the message created by a builder can be further manipulated and stored before being
used. For example, the message send strategy (e.g., asynchrony) and the notion of ‘express’
messages are independent. Any message can be made into an express message by setting it’s
express flag. So,anObject <- (M b at: 1 put: 69) asExpress will send anat:put: message toanObject
and interrupt its execution (i.e., be express).

6.4.2 Message accumulators

The message builder concept can be extended to define new messaging concepts such as message
accumulation. Accumulators collect up messages which are sent to them without actually sending
them on to another object for processing. This allows sequences of messages to be grouped and
batchprocessed. For example, the expressionM a boss husband name at: 3 will result in the
accumulation and grouping of theboss, husband, name andat: messages, in that order, into one
message. Note that message accumulation is signified byM a rather thanM b.

In addition to having a state vector for containing the accumulated messages, message accumu-
lators also respond to one message, them message. Sendingm is the mechanism for escaping from
infinite accumulation. It returns a message object containing all of the selectors and arguments
as they were specified at their original execution. Note that the arguments are evaluatedprior to
message construction and so are embedded in the message structure.

Accumulated messages can be queried, modified and sent to a receiver just like any other
message objects. For example, the expressionself <- (M a boss husband name at: 3) m will answer
the third character of the name of the husband ofself’s boss. This construct is useful for packaging a
series of messages for remote execution, dynamically creating transactions or representing logical
hypertext links.

CHAPTER 6. CODA IMPLEMENTATION AND USE 75

6.4.3 Debugging with messages

Debugging in the face of message passing is easy in Smalltalk because all messages are sequential,
synchronous and local. In CodA however, we are able to create object models where a message’s
sender and receiver are disjoint either in location or execution (e.g., distributed or concurrent
objects) and unfortunately, the standard Smalltalk debugger is uniprocessor and uniprocessing.
Cross-process(or) messages are not accommodated. If a user encounters a send to a concurrent
or distributed object while stepping in the debugger, they will not be able to follow the execution
chain into the receiver of the message. This can be quite frustrating.

We address this by having message objects (i.e., instances ofCodAMessage) support a number
of debug flags which can be set by the user. In particular, theexecute, acceptandmarshaldebug
flags. If the accept flag is set then execution will halt when the message is accepted by the receiver.
In a uniprocessor system this is not strictly necessary as conventional debuggers can step up to this
point. In a distributed or multiprocessor system however, this gives users debugging breakpoint
before the message is queued for the receiver. If the execute flag is set then the receiver will halt
just before it executes the method which was resolved for that message. This allows users to send
a message from one process and invoke the debugger on the receiver process and step through that
execution. The marshal flag halts processing when the message itself is (un)marshaled during the
send. This is convenient for investigating low-level problems and seeing how objects are being
transmitted.

6.5 Programming with CodA

Programming with CodA is often an exercise in modification. Programmers use whatever language
and tools they normally use and then apply meta-level behavioural changes to the developed objects.
Examples of this are shown in Sections 7.1 and 7.2. Programmers may also choose to develop
applications which explicitly depend on CodA’s facilities. An example of this is given in the form
of the Vibes behaviour analysis system detailed in Section 7.3.

Base-level programming with CodA is quite similar to programming with normal Smalltalk.
Though CodA objects need not be class-based, programmers typically start by creating a Smalltalk
class which gives the bulk of the desired base-level behaviour and then proceed to build mechanisms
for modifying the behaviour of instances of these classes as desired/required.

Programming the meta-level is approached like programming any other application. Program-
mers create the objects (e.g,.metas and meta-components) which describe the desired behaviour
and put them together to solve the problem. This is just like programming the base-level except
the subject matter is object behaviour rather than some application domain.

6.5.1 Code changes

One of our goals in building CodA was to enable widespread programming by modification and
thus the widespread reuse of class libraries in a variety of computational environments. Success or
failure in this respect can be measured by looking at the amount of original base-level code which

CHAPTER 6. CODA IMPLEMENTATION AND USE 76

needs to be modified, and the nature of the modifications required, to accommodate changes at the
meta-level. We classify these changes into four categories:

Annotations are modifications which do not alter the base-level semantics of a method or the
messages (contents or order) it sends. The alterations add information which can be used
by the meta-level to better adapt the actual behaviour of the object. For example, marking
a message as asynchronous is noting that the result is not used and so there is no need to
wait for its arrival. In some cases, the passing of additional arguments may be considered
an annotation. For example, object creation methods in distributed systems often require an
additional location argument. This information does not change the semantics of the sender
or receiver. It just adds additional information typically used in an annotational change in
the receiver. Meta code too is often considered to be an annotation. It does not execute at
the base-level and does not in general alter the order/semantics of the base-level code itself.

Semantic changes are changes to the content or ordering of the messages sent by a method.
These are required when the original design precludes the addition of a new behaviour (e.g.,
concurrency and distribution).

Structural changes are typically done to classes to expose operations which are embedded in
methods. For example, assume that some method, as one part of its implementation, iterates
over a set of objects. In a distributed implementation it may be necessary to separate out
this iteration for remote use. In this case the code is restructured to have a separate method
for the iteration section. One could argue that these changes are only required because the
original designers somehow failed to adequately factor their code. In reality however, one
cannot design for all possible uses so we should expect to make some structural changes.

Additional methods contain completely new semantics. Typically these are needed to handle
infrastructure added in support of behaviours like concurrency or distribution. If an object’s
representation is changed, it may require additional methods in support of its original inter-
face. Methods which provide new interfaces which are combinations of existing methods
are also counted as additional.

In later chapters and sections we measure the effectiveness of CodA in terms of the number of
requiredandoptionalchanges required in each of these categories. Required changes are, as the
name implies, changes without which the system would not function. Optional changes are ones
which improve readability, modularity or performance of the system.

Ideally we would like to make most required changes as annotations or additions as these have
the least impact on the base-level. Structural changes can often be done with relatively little impact
but may introduce programmer errors and may be incompatible between versions or configurations
of the application. Semantic changes are not necessarily bad but they do affect the portability of
objects between models and may change the correctness of the object in its domain.

6.5.2 Optimization

Optimization and behaviour change in general using CodA is quite straightforward. Because there
are concrete objects at the meta-level which describe each operation of an object, users know where

CHAPTER 6. CODA IMPLEMENTATION AND USE 77

a particular behaviour is defined and so what to change. The separation of the meta-level from the
base-level and the components from each other isolates the effects of changes in one component.

From a meta-level implementor’s point of view, optimization is a matter of implementing the
meta-level itself rather than end-user applications. The decomposition into many fine-grained
objects as proposed in CodA is very powerful but that power does not come for free. In general
there is some overhead both in time and space. Having many different objects can cause state to
be split or duplicated and methods to be broken into very small units. The physical representation
of a fully reified meta-level can be quite large relative to the base-level object size.

The simplest optimization strategy is the substitution of less general but higher performance
components. For example, by default,DistributedObjects use the fully generalMarshaling com-
ponent and have complete access to all its power. In some cases these capabilities may not be
necessary. Users are free to substitute some otherMarshaling component or to develop one of their
own and then substitute it.

In addition, CodA makes a clear and strong distinction between behaviours and the meta-
components which define them. From a meta-level user’s view point, each behaviour is distinct as
are the components which define them. From the implementation view point, this is not necessarily
true. It is perfectly acceptable to have one physical component describe several behaviours. So, for
example, in some situations there is a very strong correspondence between theQueue andReceive
behaviours. Rather than maintaining two sets of queues and lists, we can implement a combined
component which gives suitable definitions of both behaviours and has better performance. This
is discussed in Section 3.7.

This does not require any changes to the base-level code or even to meta-level code which uses
the correct meta-level accessing technique (e.g.,anObject meta queue). It does however restrict
somewhat our ability to combine meta-components because it increases the number of constraints
which must be satisfied. So, we lose flexibility but gain time/space performance.

As future work we propose a technique whereby distinct meta-components are automatically
compressedinto a smaller number of composite meta-components. This compression would be
accomplished by techniques related to partial evaluation and dynamic compilation. The compressed
meta-components would have better performance characteristics but describe the same behaviours
as their constituents.

By remembering something of their original form, we would be able to reconstruct the con-
stituent components on demand. Using this, we can regain the flexibility and composability inherent
in the fine-grained approach. When a change is desired we decompress the composite components,
make the changes and then recover the performance improvements by recompressing the new
constituents into a new composite.

6.6 Summary

In implementing CodA in Smalltalk we have found the operational decomposition of its meta-level
to be quite useful. Since the architecture itself is free of high-level object notions (e.g., classes
and inheritance), it is very easy to mold it to fit a particular environment. The implementation we
have provided is completely integrated with the underlying Smalltalk system. It is so seamless

CHAPTER 6. CODA IMPLEMENTATION AND USE 78

that CodA objects cannot, in general, be distinguished from Smalltalk objects. Furthermore, the
models developed for CodA (e.g.,DistributedObject) are universally applicable. They can even be
applied to the objects which implement the CodA architecture itself! Chapter 7 presents several
applications modified by or implemented with CodA. These are a demonstration of our success in
enabling programming by modification and integration with the underlying system.

Our implementation also demonstrates a unique solution to the object-identity problem. Since
the new information (e.g., themeta) is held within the object itself rather than externally in a table
or encapsulator, every object has only one address and costly accessing overhead is eliminated.

Smalltalk has proven to be an excellent implementation environment but there are still areas
for improvement. In particular, the Smalltalk virtual machine (VM) is not completely open. Some
operations such as message sending and method lookup are embedded in the VM. Also, since
Smalltalk is fundamentally a class-based language, the implementation of object-specific behaviour
is somewhat costly with respect to memory requirements. We have fed back our observations on
VM requirements to the virtual machine authors and look forward to reimplementing CodA in a
system with more VM support for open implementations.

At a higher level, Smalltalk’s untyped paradigm both helps and hinders CodA and its object
models. The absence of strong typing allows the free substitution of components at the meta-
level and the use of objects in completely unexpected ways. While the use of typing would not
necessarily exclude these possibilities, it would significantly complicate their implementation. On
the other hand, type information would be very useful for determining advance information on
object use patterns. For example, if the type of method arguments was known at compile time,
static, optimized marshaling code could be precompiled.

Chapter 7

Applications

The capabilities of the CodA framework have been demonstrated in the form of various object mod-
els described in Chapters 3, 4 and 5 (e.g.,ConcurrentObjects,PortedObjects andDistributedObjects).
We have not however, shown how these models and CodA in general are relevant to the real-world.
Here we present a series of example applications which demonstrate how CodA is used on real
problems and to show the usefulness of the models we have described.

The first two applications, the N-Body problem and an expert system tool, involve the
ConcurrentObject and DistributedObject models — more generally,Tj. In the first we demon-
strate the use of CodA as a runtime behaviour investigation tool. The N-Body application is small
but exhibits quite different behaviours depending on how its object’s meta-levels are defined. The
expert system tool example is intended to show how CodA is used to change the computational
domain of large, third party systems. Here we focus on the separation of the base- and meta-levels
and the amount of base-level code change required to accommodate our meta-level changes.

The third example is Vibes, an object behaviour analysis system which uses thePortedObject
model to build arbitrary analysis graphs and the CodA architecture to create an infrastructure for
object behaviour monitoring. Whereas the first two applications are largely modifications of exist-
ing systems or algorithms, Vibes is a completely new application, explicitly designed with CodA
in mind. This demonstrates CodA as a support environment for advanced application development
and highlights the degree to which object behaviour can be manipulated. It is interesting to note
that we actually use Vibes to monitor and analyze its own underlying implementation (i.e., CodA).

For each application there is a description of the basic problem and an overview of some
experiments using CodA to implement the applications. This is followed by a summary of the
concepts and mechanisms in CodA which were found to be particularly useful in the development
of the application.

7.1 N-Body

7.1.1 Problem description

The N-Body problem is a relatively simple and deterministic application. This makes it ideal for
experimenting with different computational models. The 2D N-Body problem is one of calculating

79

CHAPTER 7. APPLICATIONS 80

the forces exerted by, and movements of, a collection of bodies orparticlesin a 2D plane.
A popular force model is that of Newtonian gravity where the force exerted on particleA by

particleB depends on the mass ofB and the distance betweenA andB. The general solution
requires each particle to consult all other particles in determining its force (acceleration) vector.
Once all the forces are known, each particle is repositioned according to some time-slice factor
and its current position, velocity and acceleration. In practice it has been found that since the force
varies inversely to the cube of the distance, once the distance between particles reaches a certain
distance, their effect on each other becomes minimal and can be estimated. Barnes and Hut [4]
developed such a solution using quad trees.

Quad trees are spatially dependent structures which successively divide two dimensional areas
into quadrants. Each quad tree node has an associated area and four children which represent the
four quadrants of the node’s area. Elements are stored in the tree keyed by their two dimensional
Cartesian position. Since all the elements in a specific area will be in a known subtree, they can
be easily manipulated. As elements are added, the tree is subdivided to ensure that each leaf node
holds only one data element within its area.

To apply this to the N-Body problem we build a quad tree which holds all the particles and
then traverse the tree when calculating forces. When a node is traversed, if the distance from the
particle to the node’s center of mass is beyond some threshold, we can stop our descent down that
branch of the tree and use the subtree’s center of mass data (i.e., position and mass) to estimate the
force on the particle. This dramatically reduces the number of particle interactions. With that in
mind, the algorithm can be summarized by the following four steps:

Tree construction All of the particles for the problem are inserted into a quad tree.

Tree preparation The tree is traverse and estimates of the center of mass’ position and magnitude
are made for each subregion (tree internal node).

Force calculation The tree is traversed for each particle and the forces acting on that particle are
accumulated. Estimation is done as described above.

Particle movement Each particle’s position is updated.

7.1.2 Adding concurrency and distribution

The sequential, uniprocessor implementation of the N-Body problem consists of three kinds
(classes) of objects:Particle, QuadTree andSolver. The code for these objects is given in Ap-
pendix B. Particles andQuadTrees are quite generic. A particle is anything with position, mass
and velocity attributes.QuadTrees can hold any object that has a position attribute. TheSolver
embodies the N-Body algorithm outlined above. It maintains a set of particles to be processed and
any required data structures (e.g., the quad tree).

We are interested in the behaviour of this algorithm in a concurrent and distributed environment.
Concurrency is introduced by making each node of the tree into an active object. The particles are
treated as passive data but since they are only ever changed at one point in the algorithm (the final
step), there are no consistency problems. The basic algorithm is not altered as a result of these
changes.

CHAPTER 7. APPLICATIONS 81

The algorithm is distributed by partitioning the objects over the machine topology and man-
aging their interaction. In this situation, interaction management takes three forms: positioning,
replication and caching. Particle positioning is done by partitioning the particles into subsets which
are worked by different processors. The subsets are not necessarily spatial in nature (i.e., they are
random) and are interdependent during the force calculation phase. That is, the particles of one
processor may exert forces on those of another. The main mechanism for coordinating this inter-
action is the quad tree. As such, we require one global quad tree which organizes all particles for
the entire problem.

As a global, the tree is a bottleneck. It is traversed by all particles during tree construction and
force calculation. Replicating at least its root on every processor can save many remote message
sends. Returns on quad tree node replication costs decrease rapidly as we descend the tree since
nodes are traversed fewer and fewer times. Rather than replicating deeper nodes, we can cache
them. Caching differs from replication in that no consistency management is done. A cached object
is a copied object which maintains an identity relationship with the original. This caching can only
be done once the tree is complete as node values may be changed during element addition. During
tree preparation (i.e., once the tree is complete), remote references to children are converted to
cached references. When the tree is next traversed (i.e., during force calculation), accessed nodes
are resolved locally and further remote messages eliminated.

An alternative is to explicitly cache the entire tree on all processors. This may be inefficient
since the Barnes and Hut estimation scheme results in the traversal of only a limited number of the
tree nodes. Using the on-demand caching technique outlined above copies only those nodes which
are actually required.

We can also benefit from replication of the solver itself. By having a replica of the solver on
each processor, we initiate processing in parallel rather than having one central control point. The
replica need only synchronize periodically as the algorithm demands.

7.1.3 Changes to original code

Theoretically, caching and replication can be done without CodA orTj. However, doing so requires
significant changes to the base-level code. We must add caching and locality checks and somehow
specify argument marshaling strategies. When experimenting with many different configurations,
such changes require a great deal of effort and may introduce errors in the algorithm. On the other
hand, using a meta-level architecture, we can make behaviour changes with either no changes to
the base-level code or simple annotations.

Table 7.1 summarizes the changes required to add concurrency and distribution to a sequential
implementation. Note that the types of changes listed in the figure are defined in Section 6.5.1.
In the table the ‘Total’ row summarizes the original application while the ‘Summary’ row gives
an overall view of the modifications and additions. The original and modified code is shown in
Appendix B.

Both the summary and the code show that the changes required were quite minimal and non-
intrusive. Only in our treatment of the tree update did we actually have to change the code in an in-
trusive way to accommodate the fact that the particles were distributed (seeSolver�addParticlesTo:
in Appendix B.1.5). The rest of the changes are annotations or additions to handle the specification

CHAPTER 7. APPLICATIONS 82

of location information or control concurrency. Note that theParticle class remains unchanged.

Required Optional
Type Classes Methods Classes Methods

Total 3 25 – –
Annotation 2 5 0 0
Semantic 0 0 1 2
Addition 2 4 0 0
Structural 1 2 0 0

Summary 2 11 1 2

Table 7.1: Summary of N-Body code changes and additions

The location specification changes are required because the default of creating objects on the
same processor as the creator is not always appropriate. It can lead to undue clustering. In particular,
we need a way of distributing the quad tree nodes as the tree grows. This distribution determination
is user-specified and can be anything from random to some function of particle or parent location.

Running parts of the problem on different processors introduces implicit concurrency. As such,
synchronization may be required at various points. In this example, synchronization is required
between each of the four main steps of the algorithm and during quad tree modification (e.g., particle
insertion). There are also places which have unnecessary synchronization. While in general this
does not harm the quality of the solution, it may restrict the amount of concurrency which can be
realized. Synchronization is added or removed by declaratively changing the type of message send
from the default future type to synchronous or asynchronous (respectively).

Replication of the solver and/or the tree root is done in a declarative fashion at problem creation
time. For example, the code below creates a solver and replicates it on every processor. The(tree)
annotation is a marshaling descriptor and indicates that only the value of the solver’stree slot is
to be copied and consistency managed — all replicas use the same tree. The symbols in the(|| ...)
annotation are message selectors which, when sent to the solver, will be simultaneously broadcast
to all replicas and executed in parallel. Using these meta-level annotations we successfully hide
the replication and parallelism of an object (the solver) from its clients (the objects sending it
messages). For more on these and other annotations see Chapter 5.

solver := NBodySolver new.
solver meta replication

replicateEverywhereUsing: #((tree) (|| createTree: calculateForces moveParticles:))
for: solver.

There are a number of ways of adding caching. The easiest is by specifying it in the marshaling
descriptor of some message. Simply by specifying the#cached descriptor the relevant object
(argument) is passed by reference to the remote space. If the reference is ever sent a message,
it is automatically resolved locally by fetching the remote object represented by the reference.

CHAPTER 7. APPLICATIONS 83

Alternately, existing remote references can be dynamically changed into caching references by
modifying their meta-levels. Explicit caching of remotely referenced objects is done using one of
the copy/localization operations of the reference’sState meta-component (e.g.,copyLocalUsing:
descriptor or localizeUsing: descriptor).

7.1.4 Experiments

Figures 7.1 and 7.2 show messaging graphs for four different runs of the same N-Body problem.
These particular runs were with 128 particles running on 32 nodes of a Fujitsu AP1000 [38].
All figures represent the number and type of messages sent by the objects on one processor of the
AP1000 (processor 0). Alternative views and monitoring schemes are possible but this demonstrates
the depth to which one can go in investigating object behaviour.

In the figures, the vertical dimension quantifies the number of messages sent to a remote
processor. Time is sliced into uniform chunks of one second along the right-hand horizontal axis.
The left-hand horizontal axis represents messagetype. There are two kinds of types; raw system
and user. The system types are; normal, reply and system. These types are applied implicitly to
all messages. Users can also specify their own types for each message. In our example we have
simply mapped message selector onto a type. The symbols noted along the bottom left axis of
each graph are the type identifiers. Note also that the left most type isTotal. This is the total of all
messages of any type.

The runs shown in each graph were varied by changing the use of replication and caching on
the objects in the algorithm. The runs in Figure 7.1 have no replication while those in Figure 7.2
are with the root of the quad tree replicated on all processors. In both figures, the runs in the lower
graph have particle caching enabled.

Looking at the figures there are several interesting points to note. First is that they all have
roughly the same shape but that the time scales differ significantly between the replicated and
non-replicated versions (Figures 7.1 and 7.2). We observe that the main peak in all the graphs is
due to theforceOn: message. TheforceOn: method traverses the quad tree to calculate the total
force exerted on its argument. Comparing the replicated and non-replicated versions we see that the
without replication the peak is lower but stretched out in time. This is in contrast to the replicated
versions where the peaks are much higher but are compressed in time. This is the telltale sign of a
bottleneck.

Without replication, all other processors send theirforceOn: messages to processor 0 which
happens to hold the root of the quad tree. Consequently, processor 0, in traversing the tree, will have
to send manyforceOn: messages. By replicating the root, many of these messages are distributed
over the other processors. The level of concurrency is increased and the severity of the bottleneck
is reduced.

We also noticed only a slight difference between the runs with and without caching (the lower
and upper graphs of the figures respectively). This was somewhat surprising as we expected a
significant savings due to eliminated remote message sends. Caching did however change the the
number of different types of messages sent. We can see that almost all of the messages normally
sent toParticle objects (e.g.,data, mass, velocity) are eliminated by caching. Unfortunately, it
appears that these messages do not represent very large portion of the overall message traffic and

CHAPTER 7. APPLICATIONS 84

10

20

30

Time

Total
Normal

Reply
System

startBenchUsing:
for:in:

add:
position

prepare
data

mass
velocity

weightedPosition
calculateAccelerationIn:

forceOn:
CodAsetValue:

acceleration
moveOver:

0

50

100

150

200

Messages

10

20

30

Time

(a)

10

20

30

40

Time

Total
Normal

Reply
System

startBenchUsing:
position

add:
for:in:

prepare

calculateAccelerationIn:

forceOn:

CodAsetValue:

acceleration

moveOver:

0

100

200

Messages

10

20

30

40

Time

(b)

Figure 7.1: Messaging behaviour without replication

CHAPTER 7. APPLICATIONS 85

5

10

15

20

Time

Total
Normal

Reply
System

startBenchUsing:prepare
data

position
mass

velocity
weightedPosition

update:with:for:
calculateAccelerations

forceOn:
CodAsetValue:

moveParticlesOver:
clearDataAndChildren

addParticlesTo:
for:in:

add:

0

100

200

Messages

5

10

15

20

Time

(a)

5

10

15

20

Time

Total
Normal

Reply
System

startBenchUsing:
prepare

update:with:for:
calculateAccelerations

forceOn:
CodAsetValue:

moveParticlesOver:
clearDataAndChildren

addParticlesTo:
position

for:in:

add:

0

100

200

Messages

5

10

15

20

Time

(b)

Figure 7.2: Messaging behaviour with replication

CHAPTER 7. APPLICATIONS 86

so our caching efforts are ineffective. While this is disappointing it does point out that not all
optimizationsare useful in all applications. It is important that we be able to easily identify those
which are useful relative to those which are not. CodA allows us to do this with little effect on the
base-level code and so greatly reduced programming effort.

7.1.5 Summary

Though we have done many more, these four tests are representative of the way in which users use
the system. Appendix B.1.6 details the changes and invocation sequences required to run each of
the test cases discussed here. They show the variety of things possible using simple modifications
and without impact on the base-level code. The data shown in the figures is just one small portion
of that which can be collected and analyzed by Vibes, CodA’s monitoring system (see Section 7.3).

Using these techniques, programmers run their applications and gather performance data. This
data highlights, for example, areas of the algorithm which result in inter-processor messages. The
objects involved can then be modified (e.g., replicated, cached) and the number or characteristics
of the inter-processor messages changed. As we have seen with caching, things that we think will
improve performance do not always work. It is vitally important that designers and programmers
be able to experiment with distribution configurations and examine their behaviour. Since they
may want to try many configurations, it is also important that configuration specification be non-
intrusive on the base-level application code. These are some of the primary motivations for creating
and using CodA.

7.2 Expert system

7.2.1 Problem description

The N-Body problem discussed in the previous section is quite regular and predictable. The units
of computation are distinct and disjoint as are the points of synchronization. To examine a more
dynamic application we chose a forward chaining first-order production system based on the Rete
pattern matcher[13]. The implementation we chose,ENVY1/Expert, is a commercially available
product written by a third party. This affords us an opportunity to investigate the impact of our
changes to base-level code in a more objective fashion.

The basic layout of the application is shown in Figure 7.3. Anexpert systemconsists of a
collection of objects or facts (fact base), a collection of rules (rule base) and aninference engine
which processes this knowledge. The rule base is really a Rete pattern matching graph with input,
output and internal nodes. The internal nodes represent individual tests corresponding to the clauses
in the predicates of the rules. Each output node represents the complete set of predicates for one
rule. The graph has a single input node which is the root of the pattern matcher.ENVY /Expert
is fully integrated with the Smalltalk environment and uses Smalltalk code to represent antecedent
clauses and rule conclusions.

1ENVY is a registered trademark of Object Technology International Inc.

CHAPTER 7. APPLICATIONS 87

Factbase

Inference
Engine

Tokenized
facts

Activations

Activations

Asserted
facts

Asserted
facts

Agenda

Rulebase

Application
Domain

Figure 7.3: Overview ofENVY /Expert

When newfactsare discovered, they are wrapped intokensand injected into the root of the
matching graph. At each node the token is optionally merged with other waiting tokens and tested.
If it fails the test, that branch of matching is terminated. If it succeeds, it is passed on to following
node(s). Tokens making it to an output node represent a set of facts or acontextwhich satisfy all
the predicates for a particular rule. That rule is activated (added to theagenda) with the satisfying
context.

The inference engine is somewhat disjoint from the predicate matching process. Its job is
to iteratively take activated rules off the agenda and execute their conclusions in their activation
context. Doing this may add or remove facts, invoke the pattern matcher and thus activate or
deactivate rules. Execution continues until there are no more activations to be processed.

7.2.2 Adding concurrency and distribution

The main goal of experimentation with this application was to investigate the addition of both
concurrency and distribution to anunsuspectingapplication — one which was not designed with
that in mind. To introduce these behaviours to the expert system (i.e., the facts and rules) and the
inference engine itself, the first step is to enable the assertion of facts which are not local.

This does not distribute the inference engine directly but rather allows it to work on distributed
objects. Since distribution inTj is transparently added to objects, the application functions with no
changes in the distributed environment. Facts can be freely distributed. Since rule antecedents are
tested by executing methods on the facts being tested, rule satisfaction is partially distributed.

Unfortunately, most interesting facts are mutable objects and so are passed by reference. As
such, there can be severe performance costs associated with this kind of distributed implementation.
In particular, the pattern matcher sends manyclass messages to fact objects in the initial stage of

CHAPTER 7. APPLICATIONS 88

pattern matching. For remote facts this access is a costly remote message send.
Using a variation of theRemoteReference scheme discussed above, we cache the class of an

object with its remote reference. Specifying this type of cached class reference as the marshaling
default in a newly asserted fact’sMarshaling component is a simple change. It eliminates all of these
class messages but at the cost of 4 bytes per remote reference object (seeEEShell�addFactObject:
in Section B.2.1). Though this change is technically optional, we view it as necessary for perfor-
mance reasons.

The next step is to add distribution to the expert system’s inference engine. Doing this effectively
decouples the nodes of the pattern matching network from each other and the inference engine.
This increases the available concurrency and enables behaviours such as migration.

The addition of distribution to the algorithm implicitly adds parallelism and requires that infer-
ence engine elements be protected from concurrent access. The most effective means of protecting
an object from concurrency is to make it concurrent (active) itself. Active objects have explicit
control over which threads execute their code and so are implicitly protected.

An object is made active by adding theConcurrentObject model to its meta-level (e.g.,
anObject meta installModel: CO for: anObject (see Section 3.5.1). Variations on this allow the
specification of the object’s protected (execution controlled) methods and default activity (see
CodAActivityBlockFor: andCodApublicMethods in Section B.2.1).

Once the application elements are decoupled and protected, they can be freely distributed. But
this is not the whole story. Distribution via remote referencing, as we have seen, can be ineffective.
Replication and/or caching can be used to address some but not all cases of distributed mutable
objects. In the expert system case, some nodes have memories or tests which involve local objects.
Replication may be effective for accesses but at the cost of increased update costs. Selective
replication of objects and object slots allows static (immutable) and slow changing objects parts
to be duplicated on remote processors while keeping the large, frequently changing parts local.
The declarative nature ofTj allows these factors to be changed easily and without affecting the
base-level semantics.

7.2.3 Changes to original code

This example also demonstrates the usefulness of the CodA/Tj architecture in generic applications.
The expert system used here is a commercially available product,ENVY /Expert, implemented in
Smalltalk. It was written strictly as a uniprocessor, sequential package taking no account of CodA
or Tj, or the demands of distribution and concurrency. It consists of approximately 100 classes
and 1500 methods in total. Of these, some 80 classes and 1000 methods are directly related to the
execution and support of inferencing.

We approached the modification with ablack boxmentality and an eye to minimizing changes
to the original code. The changes and additions made in the creation of the concurrent and dis-
tributed version are summarized in Table 7.2. As we can see from the table, the only changes
were annotations and additions. Appendix B.2 shows most of the modified and added methods
required for this application. The added methods generally relate to initialization and setup, and
the establishment of proxies for remote objects.

The bulk of the annotations set meta-level structures used automatically by the CodA archi-

CHAPTER 7. APPLICATIONS 89

tecture. For example, theCodApublicMethods methods which declare a class’ public interface and
theTjmigrationDescriptorFor: which declares the shape of migrated objects (i.e., how they are mi-
grated). Note that this shape is different from that used when objects are passed (i.e., marshaled).
Although these changes are implemented as additional methods, they are not part of the normal
call chain and are counted as annotations to the classes themselves.

Type Classes Methods

Total 80 1000
Annotation 14 18
Semantic 0 0
Addition 7 16
Structural 0 0

Summary 15 34

Table 7.2: Summary of expert system changes and additions

7.2.4 Experiments

Our main goal in implementing this application was to investigate the software engineering aspects
of CodA andTj when applied to a real-world system. This was detailed in the previous section.
Having applied our techniques to the algorithm itself, we also experimented with their application
to several representative knowledge bases. In particular, the Waltz line labeling system [6].

Waltz is a system for aiding in the 3-dimensional interpretation of 2-dimensional line drawings.
It contains 33 rules and operates over 9 different types of fact objects (e.g., lines, junctions) and
their components. The calculations and comparisons done by Waltz are relatively simple. As lines
are analyzed Waltz creates junction objects representing the convergence of two to three lines. The
knowledge for how these joints are constructed is embedded in the expert system’s rules. A variation
of this system, Waltzdb, generalizes the Waltz solver to handle junctions of more than three lines. It
uses a more abstract representation of the knowledge of junction construction and contains slightly
more rules. Both Waltz and Waltzdb are standard benchmark programs for rule-based production
systems [6].

While Waltz, from a domain point of view, is not particularly motivating, it is representative of
applications which execute a known set of queries interleaved with data update transactions (e.g.,
databases). Execution begins with one set of facts (lines) and produces another set (junctions).
Along the way, intermediate facts such as edges and flags are manipulated.

Distribution is added to the domain by making a simple modification to the initialization mech-
anism. This change distributes the initial fact base over the machine topology. The inference engine
however is still centralized. Since it runs all the rule conclusions, which in turn create new facts,
and new objects are by default created local to their creator, the distribution is less than even.

To smooth out the distribution of facts, we annotate the rules which create them. The annotations
explicitly specify the location of new facts. So for example, intermediate edges are created on the

CHAPTER 7. APPLICATIONS 90

processor which contains the majority of its associated lines. Since rule conclusions are just
Smalltalk code, these changes have the same form as those done to the inference engine itself.
Figure 7.4 show an example of such a modification.

In the figure, the modified statements are indicated by a->. The statementWaltzEdge in: (aLine
meta state spaceFor: aLine) creates a newWaltzEdge object in the same space asaLine and so
maintains locality with the fact it represents.

makeEdges
"Construct an Edge fact for every WaltzLine."
| WaltzLine aLine |
aLine notNil.

PRIORITY 10
ACTIONS

|edge1 edge2|
edge1 :=

-> (WaltzEdge in: (aLine meta state spaceFor: aLine))
startPoint: aLine point1 endPoint: aLine point2.

edge2 :=
-> (WaltzEdge in: (aLine meta state spaceFor: aLine))

startPoint: aLine point2 endPoint: aLine point1.
edge1 assert.
edge2 assert

Figure 7.4: Example modified rule

We can also distribute the rule base’s representation and execution. Rulebases are represented
by Rete pattern matching networks. Networks for a particular rule base have a number of properties
which can influence their distribution. For example, paths through the graph represent paths through
individual rule antecedents. One rule may have many paths to satisfaction (e.g., if there are any
OR operations). If the corresponding Rete nodes are clustered on the same processor, techniques
such as caching are more effective. Depending on the rulebase itself, there may also be distinct
subgraphs of related rule antecedents which should be clustered or distributed. Particular kinds
(e.g., classes) of facts may only be relevant to a certain subset of rules encouraging those facts to
migrate and new facts of those types to be created near the rules which will handle them.

7.2.5 Summary

This application is interesting because the original base-level program is large and not specifically
designed to run in this environment (CodA and/orTj). With relatively few modifications we were
able to introduce both concurrency and distribution. The notions added were quite straightforward
in nature but demonstrate the viability of our approach. More sophisticated mechanisms are added
in an analogous fashion. This example also highlights the contagious nature of distribution. By

CHAPTER 7. APPLICATIONS 91

modifying only a few ‘root’ objects in the system (e.g., facts, nodes, inference engine), many other
parts are distributed.

How the distributed version of an expert system is run depends on the situation.ENVY /Expert
is intended to be fully integrated with some other application. That is, it is not a stand-alone expert
system shell. The fact objects over which it reasons are expected to be regular objects from some
application domain (e.g., a banking application). As such, fact distribution depends largely on the
application itself.

These strategies and others are made possible by using a uniform, transparent, non-invasive
mechanism for introducing distribution and concurrency. It is outside the scope of our work to
investigate these further but the effects of having a meta-level architecture such as CodA are clear.
Sophisticated notions of distribution and concurrency can be added to ‘unsuspecting’ applications
with relatively minor changes. The architecture is so completely integrated in to its implementation
environment that it can be applied to tertiary systems which implement entirely different base-level
computational models (e.g., rule-based systems).

7.3 Vibes

7.3.1 Problem description

Though object-oriented programming is much vaunted for its intuitiveness and similarly to the real
world, many implementation behaviours bear little or no resemblance to any naturally occurring
phenomena. Consequently, we have little intuition of how to observe and analyze them. Current
monitoring and analysis tools (e.g,. Pablo [36] and Parasight [2]) help to a certain degree but are
not completely applicable to object-oriented systems. They assume and require system models
where code is fixed, types exist and are known, variables and storage are predeclared and system
behaviour isregular. They cannot handle polymorphism, late binding or sophisticated symbolic
processing in their analyses.

Further, their facilities are oriented towards measures of behaviour (e.g., numbers of messages
sent, timestamps) rather than the behaviours themselves. In large complex object-oriented systems,
very few of these premises and properties hold and the disparity only increases with the addition
of diverse computational behaviours such as concurrency and distribution.

Since our work with CodA specifically targets these irregular, object-oriented systems with
many different behaviours, this is a significant problem. If we want to provide a complete environ-
ment, we must supply tools for monitoring and analyzing object behaviour.

We propose a monitoring and analysis system called Vibes. Vibes draws on the good points
of existing systems and adds support for object-oriented system analysis. In looking at available
analysis systems from different domains we found that Pablo and scientific data visualizers like
Explorer [39] and AVS [41] all use adataflowmodel.

An analysis system consists of a series of interconnected nodes which describe data transfor-
mations. Observed data are input at various points in the graph and processed by the functions at
the graph nodes. Each function performs some transformation or analysis of the data and passes it
on to the next node for further processing.

CHAPTER 7. APPLICATIONS 92

The dataflow model is nice because it is clean and flexible. Graphs can be arbitrarily large and
complex and the basic architecture supports extension. The paradigm is intuitive to users and easy
to describe. For these reasons, we use the dataflow model in Vibes.

7.3.2 Analysis framework

An overview of the Vibes architecture is shown in Figure 7.5. The upper shaded area is the runtime
instrumentation and data gathering. The irregular shaped objects are application domain entities
while the uniform ovals are Vibes probes (see Section 7.3.3 for details) and analysis nodes. The
unshaded (lower) area of the diagram depicts the off-line analysis portion of Vibes.

DSP

sum

filter

correlation

...to output
device

...to output
device

... more
processing

... more
processing

online
(instrumentation)

offline
(analysis)

synthesis

mapping

Figure 7.5: Overview of Vibes

From an implementation point of view, the off- and on-line analysis systems are the same. The
difference is when and how they are used. The purpose of on-line analysis is data reduction. It is
generally infeasible to collect all data from all entities in the system. By doing a certain amount of
prefiltering and analysis we can eliminate extraneous data and compact or abstract other data.

Vibes improves on current analysis systems in two ways: by allowing any object to be processed
and by allowing any object to be used as a processing node. The former is a consequence of using
a pure object-oriented environment (e.g., Smalltalk) for the implementation of Vibes. The latter
requires the power of CodA.

In current systems, processing nodes must be created explicitly as processing nodes. That is,
existing class libraries cannot be directly reused in the building of analysis networks. Users wanting
to extend the set of analysis functions have to, at best, program a dataflow wrapper for existing
objects or, at worst, reprogram the objects in the analysis system’s framework.

CHAPTER 7. APPLICATIONS 93

Users of Vibes, on the other hand, can directly use existing objects in the dataflow paradigm by
modifying their meta-level. Readers of Chapter 4 on thePortedObject model will already have an
idea of how we do this. In that chapter we gave an example of adding porting to a signal processing
object to allow it to behave as a correlationPortedObject. All that was required was the identification
of the ports and a specification of the coordination conditions and execution definition.

The power of this model is made evident by considering the construction of simple filters.
A filter is a node which tests each incoming data value against some predicate. If the predicate
succeeds then the object is passed to the next node in the graph. Otherwise it is rejected. Suppose
for example that we are interested in all data objects whosefoo attribute contains a magnitude
greater than 20.

In Smalltalk, such a predicate would be represented by aBlock containing the test code.Blocks
are encapsulations of computation and environment which can be evaluated (i.e., run) at any time.
Below is theBlock representation of this predicate for use as a Vibes processing node. Note that
when the predicate is run,anObject is the filter node itself.

aBlock := [:anObject |
(anObject input foo > 20) ifTrue: [anObject result: anObject input]]

To install this block as a node in a Vibes analysis graph we add porting (as shown in the DSP
example from Chapter 4) and connect its ports to other objects in the graph. The DSP example
used declarative annotations to the object (i.e., methods on its class), to introduce porting. We can
accomplish the same thing via parameters to the porting operation. The code below demonstrates
how this is done. Note thataBlock is the predicate block described above.

po := PortedObject inputs: #(input) outputs: #(result) evaluator: aBlock.
anObject meta installModel: po for: anObject

Once the filter is ported, it is connected to the other nodes in the analysis graph using the
technique described in Section 4.2.

In a non-Vibes system we do the same thing by either building a specific filter object for each
kind of filter we want or by creating a generic filter object into which different predicates can be
plugged. Clearly the latter option is best but it still requires a priori knowledge of the filter concept.
That is, if the analysis system does not have a generic filter node then the user has to program one.
Using CodA and Vibes, any object can be put into the analysis graph with little or no programming.
Vibes is more extendible.

In addition to thePortedObject model’s extensibility, we can use its capacity for creating
compounds as a way of abstracting analysis subsystems. Rather than forcing users to know all the
details of the potentially complex analysis techniques, we can group analysis nodes into modules
with well-defined input and output ports. This gives us a mechanism for reuse and sharing of
analysis techniques.

7.3.3 Monitoring

Vibes is designed to process behavioural data gathered from running systems. To collect that data
we supply an instrumentation framework. Fundamentally this framework is the same as that used

CHAPTER 7. APPLICATIONS 94

for analysis. Monitoring graphs are constructed ofPortedObjects which gather, massage and store
data. The difference is that the monitoring system also contains instruments orprobes. Probes are
objects which are coupled directly to the objects being monitored and supply a feed of low-level
physical events to the monitoring system.

These events are either used directly or synthesized into logical events by monitoring nodes.
For example, to produce a logical duration event we must hook start and end events and count the
time units which pass between them. Probes supply the events to monitors which track the time
and construct the logical event.

The key goals in any monitoring system are to gather as much data as possible with as little dis-
ruption as possible. CodA’s reification of meta-level behaviours into fine-grained objects supports
both of these. All facets of object execution are reified as objects at the meta-level. The obvious
approach, and that used by most examples of meta-level monitoring facilities, is to simply replace
existing meta-components with ones which describe some sort of ‘monitored’ behaviour.

This is certainly feasible and possible in CodA but there are problems. Most significantly, this
technique does not scale to handle the monitoring of behaviours in many different object models.
The monitored version of a meta-component must do two things; monitor the componentand
emulate the behaviour description found in the original component. That is, we must duplicate the
component’s functionality. In Vibes we take the meta-meta-level approach.

Consider the monitoring of an object’s message sending activity as shown in Figure 7.6. The
objectA is sending the messageM to some other object. To do this,A’s Send’s send:for: interface
method is invoked. This is true for allSend operations regardless of their actual definition —
The operational hooks are generic. TheSend’s Execution (i.e., the meta-meta-level) simply has to
watch the invocationssend:for: and perform the appropriate monitoring operations.

The benefits of this technique are that the monitoring mechanism is generic, it can be applied
to any component regardless of the behaviour is defines, and that it is completely non-intrusive on
the base- and meta-levels. This is not completely feasible in other systems as their behaviours are
complex and not fully reified as objects. They do not present sufficient surface hooks.

With CodA however, meta-components are simple and fine-grained, and they reify the base-
level object’s operations which is typically the target of monitoring. So, there is generally no need
to look inside the component, we can simply watch from its meta-level.

There may still be cases in which meta-component interface watching may not be sufficient. If
so, whole meta-components must be replaced with monitored versions as described above. Again
though, CodA’s fine granularity decreases the impact and cost of doing this as only the operations
being monitored are affected.

7.3.4 Summary

The Vibes application is an example of a system specifically designed for and with CodA. In contrast
to the other examples which use CodA to add unanticipated behaviours ‘after the fact’, the basic
Vibes architecture relies on an object model created in response to its requirements, thePortedObject
model. Though we did not present it here, we also created concurrent and distributed versions of
Vibes by combining thePortedObject model with theConcurrentObject and ConcurrentObject
models. This example demonstrates the usefulness of CodA both in the design of applications and

CHAPTER 7. APPLICATIONS 95

Send

Monitored
Execution

A

A meta

A meta send meta

Figure 7.6: MonitoringSend activity

the prototyping of their behaviour.
Further, Vibes is a real and useful application. We use it to analyze the object models and

applications we create using CodA andTj. The performance data discussed in Section 7.1.4
was gathered and analyzed using Vibes. Though not explicitly discussed, it was also used while
developing the distributed expert system tool in Section 7.2.

We have also done a number of ad hoc experiments with novel analysis techniques such as
signal processing and using expert systems for abstracting gathered data. These are discussed in
[26].

Chapter 8

Evaluation

Direct comparison between existing meta-level architectures is a tenuous proposition at best. Ex-
isting architectures typically focus on different aspects of object behaviour and so naturally have
different capabilities. By abstracting out notions of capability we can at least try to position archi-
tectures relative to one another. Users can then match the capabilities of an architecture to their
requirements. We also evaluate our system in terms of end-user performance in an effort to show
that the system is usable as an environment for prototyping and experimentation.

8.1 Capability

Based on the goals outlined in Chapter 1, we identify a number of properties which we use to
informally relate systems to each other. We show that CodA provides a reasonable level of support
for these properties and so satisfies our overall goals for meta-level architecture design. Since most
systems support a reasonable separation between the base- and meta-levels, we do not consider
this aspect in the comparison. Support for the other aspects (i.e., expressiveness, extensibility and
programmability) however varies widely.

The properties used in the analysis are enumerated and described below, and related to existing
architectures in Table 8.1. There is one row in the table for each system and one column for each
property. The meanings of the table’s symbols are given in Table 8.2. We have not listed properties
which we have found to be present or absent from all systems.

1. Is the programmer’s interface clearly and well-defined? That is, does the architecture specif-
ically set out a programmer’s interface or is it left as an implementation detail? Such an
interface is both in terms of objects and methods. Without a concrete structure, meta-level
programmers are left on their own both to figure out how the system works and how to write
their code so that it can be integrated with that of others. Of primary importance here is
the granularity of the interface. Simply having a few high-level entry points may support
meta-level use but does not support meta-level change. A meta-level object, like all objects,
should present a rich, multi-level interface protocol.

2. Are the architecture’s behaviour abstractions high-level? For the concepts that can be ex-
pressed, do the abstractions presented closely match the fundamental concepts of the system

96

CHAPTER 8. EVALUATION 97

Architecture 1 2 3 4 5 6 7 8 9

CodA • ◦ • • • ◦ • • ◦
CLOS MOP • • × – × – ◦ • ×
ABCL/R2 × × ◦ – ◦ × × × ◦
AL-1/D • ◦ • × ◦ × ◦ × •
RbCl ◦ ◦ • × × – • • •

Apertos • ◦ ◦ ◦ • ◦ • • •

Table 8.1: The relationship between meta-level architectures.

Symbol Meaning

• Fully and explicitly supported.
◦ Partially (in scope or depth) supported.
× Not explicitly supported.
– Not applicable. Depends on unsupported property.

Table 8.2: Levels of support.

(e.g., message passing)? How many operations must a meta-level programmer invoke to
effect some behaviour. Systems with good abstraction require relatively few since they have
abstracted the details into a higher-level interface.

3. Does the architecture facilitate the description of object behaviour from more than one
computational domain (e.g., sequential, concurrent, multi-threaded or distributed objects)
or are all objects basically the same. This relates to the independence of the architecture
from the object/language models it supports. Is the architecture a mechanism for reifying a
particular language or computational structure, or is it more general. An open architecture
will allow anything to be implemented but having a strong and clear separation between the
architecture and the object models enables both the implementation of radically different
computation styles and the inter-operation of objects using these styles.

4. Does the architecture have specific support for extension? The simple ability to add to the
architecture is insufficient here. Without a framework for tracking and managing this change,
user’s will develop their own ad hoc styles which will clash when combined. Frameworks
can range from simple structuring conventions to explicit mechanical support.

5. Does the architecture support the encapsulation of object models? This is closely related
to the idea of abstraction but for structuring rather than interfaces and execution. Simple
models are easily described by changes to, or the addition of, a few methods or objects in a
restricted area of the meta-level. More complex behaviours affect many methods and objects

CHAPTER 8. EVALUATION 98

from various parts of the meta-level. We must be able to manipulate entire behaviours as a
small number of atomic concepts regardless of their complexity.

6. Does the architecture support object model combination and configuration? Architectures
with frameworks and encapsulation implicitly support model combination. However, factors
relating to granularity and complexity also come into play when configuring meta-levels.
Combination and configuration support enables the merging of two or more models whose
changes and additions range over diverse parts of the meta-level. This is essential if the
meta-level architecture is to scale to support many different models.

7. Is object behaviour reified to a reasonably fine granularity? All object-oriented meta-level
architectures reify behaviour as objects at the meta-level. The important questions are; how
many and how were they derived? The granularity of the decomposition has a profound
effect on the nature of the use of the meta-level. Finer objects allow more flexibility but
require more maintenance. The objects in a coarser decomposition are more easily used
(i.e., they have a higher-level interface) but the behaviour they describe is more difficult to
reuse.

8. Does the architecture support the reuse of behaviour descriptions (e.g., meta-components)?
If an architecture has a sound framework including model encapsulation then it has implicit
support for reuse. This is enhanced by a consistent and fine-grained decomposition of the
meta-level as well as any explicit reuse mechanisms which may be provided. Decomposition
into methods does not form a sound basis for reuse as individual methods do not generally
support reuse.

9. Does the architecture reify low-level system related behaviours such as garbage collection,
process scheduling and object location? Some of the systems considered have no relation to
such operating system level concepts while others deal mainly with these issues.

The following sections highlight particular points of the considered systems with respect to
these properties and form an explanation of the values in Table 8.1.

8.1.1 CodA

2 Since the basic architecture is independent of a particular language, the abstractions provided
are not as high-level as those found in more language-specific architectures like CLOS. For
example, the architecture has no explicit notion of class. However, implementations may
‘borrow’ concepts like classes from their host language. In the Smalltalk implementation,
normal classes can be extended to define additional or redefine existing meta-components
for its instances.

6 Though CodA’s general architecture of fine-grained objects encourages and supports combina-
tion and reuse, the object model’s configuration management mechanisms (see Section 3.5.1)
are not sufficiently powerful to handle complex situations.

CHAPTER 8. EVALUATION 99

9 As shown with theConcurrentObject and DistributedObject models, CodA reifies significant
portions of an object’s low-level behaviour. It does not however contain an explicit model
of the underlying system (e.g., the memory or execution systems). These are left to the
implementation platform.

8.1.2 CLOS MOP

The CLOS MOP’s domain is somewhat different from that of CodA in that its aim is to unify various
CLOS object models. This is accomplished by reifying at the meta-level, those components which
describe differing behaviours. The reified behaviours tend to be morestructural than operational
as in CodA. As a side-effect of the CLOS object model, the definition of behaviour on a per-object
basis does not fit naturally into the CLOS MOP design. The CLOS meta-level architecture is neither
general purpose nor particularly extensible but it is quite powerful within its intended domain.

3, 4 The CLOS MOP’s basic execution model is that of CLOS (i.e., method-oriented). It does
not support things like object-specific method invocation reification in a scalable way. The
base-level system (e.g., CLOS) does not generally support the addition of concurrency or
distribution so these concepts cannot be introduced at the meta-level.

5, 6 The MOP is a fragmented reification of behaviour with no mechanism for grouping behaviours
to form coherent wholes. CLOS classes are an insufficient mechanism for this as they are
not independent of the base-level.

7 CLOS MOP metaobjects reify, in objects, the structural nature of CLOS (e.g., classes, methods,
slots, etc.) rather than its operational aspects (e.g., sends, lookups). Operational behaviour
is described in methods on the structural metaobjects. The meta-level is medium-grained.

9 The domain of the CLOS MOP is the CLOS language, not its implementation. As a result, very
few of the underlying details of real CLOS systems (e.g., garbage collectors) are reified in
the MOP.

8.1.3 ABCL/R2

The ABCL/R2 meta-level architecture is one of the few which deals with concurrency. It is quite
open but does not explicitly abstract many object behaviours. Since the ABCL language is quite
simple, this is not a too much of a problem. While it is in theory extendible, the architecture has no
framework or infrastructure for extension. Creating new behaviour for an object implies writing
code rather than changing parameters or plugging-in components as seen in other architectures.
There are no facilities for configuring or structuring the meta-level itself.

1, 2 The ABCL/R2 meta-level is basically an interpreter whose design is left up to the implementor.
The architecture itself says little about its structure or the abstractions it contains.

3, 4 ABCL/R2 objects are generally single threaded and concurrent. For implementation efficiency
the system also provideslightweight objectswhich are essentially passive and stateless. There
are no other facilities for extending this set of computational domains.

CHAPTER 8. EVALUATION 100

5, 6 Since the entire meta-level of an ABCL/R2 object is captured in its metaobject, the metaobject
description implicitly encapsulates an object model. Metaobjects and thus object models are
effectively interpreters, implemented as code and so do not readily support combination and
configuration.

7, 8 The ABCL/R2 meta-level is made up of only a few objects. The internal structure of these
objects is not explicitly set out by the architecture. Without this, the architecture cannot
properly support scalability or reuse.

9 The group model of ABCL/R2 allows the description of some low-level execution behaviours
such as scheduling.

8.1.4 AL-1/D

AL-1/D is one of the few architectures which deals with distribution. It focuses on a set of meta-
level concepts directly related to distribution requirements. Parts of the AL-1/D system can be
mapped onto those of CodA andTj as shown in Table 8.3.

AL-1/D CodA/Tj

Operation Standard CodA meta-components
Migration Tj Marshaling andMigration
System Smalltalk
DE+Resource Tj infrastructure objects (topology, space, ...)
Statistics Tj monitoring (largely meta-meta-level)

Table 8.3: Mapping from AL-1/D to CodA.

As noted in Section 2.6 and show in Table 8.3, the meta-level is somewhat unbalanced. The
Operation model is equivalent to most of the basic CodA meta-components but the architecture
contains no facilities for intra-model structuring — The behaviour defined and structured in CodA
is unstructured in AL-1/D. Furthermore, the AL-1/D meta-model scheme does not extend to support
the grouping of arbitrary metaobjects into manipulable wholes (i.e., object models).

3, 4 The portion of the meta-level which deals with object execution (i.e., the Operation model) is
explicitly partitioned in AL-1/D. New computational domains are implemented by providing
new Operation models. The models themselves however, contain no infrastructure to support
this modification.

5, 6 The Operation model embodies entire and complete object model descriptions. The architec-
ture does not support sub-models, model intersection, combination or other manipulation.
Nor does it support the grouping of specific meta-models to form a coherent whole.

CHAPTER 8. EVALUATION 101

7, 8 The AL-1/D meta-level is decomposed into objects but the architecture says nothing in partic-
ular about their granularity or relation to one another. Reuse is provided via the meta-model
concept but the models provided are of varying granularity and complexity.

8.1.5 RbCl

RbCl is another architecture with support for concurrent objects. The RbCl approach differs from
ABCL/R2 and is similar to CodA in that it does not use the interpreter model of the meta-level.
Rather, the meta-level is looked upon as a collection of objects which provide services to the
base-level objects. Object behaviour is modified by replacing the objects at the meta-level on an
individual basis. Since the meta-level objects are also objects having meta-levels, this can be seen
as pushing the underlying machine further away from the base-level objects only in the areas of
interest (i.e., those reified). CodA and RbCl differ in the level of infrastructure they support and
their approach to meta-level decomposition.

1, 2 The programmer’s interface for RbCl is well-defined in the sense that there are definitions
for many (most) object behaviours. It is not well-defined in the sense that it is not clearly
set out in the literature. Overall many of the interfaces are at quite a low-level and without
higher-level abstractions to ease their use.

3, 4 The architecture is a reification of a specific object model, namely single threaded concurrent
objects. Since the reification is at such a low level, there is some support for the implemen-
tation of other computational domains. However, this support is not explicit.

5, 6 There is no notion of overall object model encapsulation or behaviour grouping.

8.1.6 Apertos

Even though the domains of Apertos and CodA differ significantly, the basic architectures have
quite a bit in common. Both reify the meta-level as objects and provide mechanisms for structuring
and grouping these objects (i.e., Apertos metaspaces and CodA object models). It is difficult to
directly compare the nature of their decompositions due to domain differences.

1, 2 Though not explicitly set out in the current literature, Apertos’ programmer’s interface is
reasonably well-defined. This is a consequence of its role as an operating system which
is used by various client programs. Though its reified structures closely match those of its
domain, they are not particularly high-level or abstract.

3, 4 Apertos is an object-oriented operating system, not an object operating system. As such, it is
not particularly concerned with the description of object behaviours at a level higher than its
execution and resource requirements. It does not define howobjectbehaviour is described
or structured.

5, 6 The Apertos architecture supports a hierarchy ofmetaspaceswhich are used to encapsulate
groups of meta-level objects. Metaspaces are used only as structuring concepts and do not

CHAPTER 8. EVALUATION 102

play any role at runtime. As such, they are somewhat limited in their support for behaviour
combination and configuration.

7, 8 Though Apertos’ domain (e.g, operating systems) is different from most of the other systems,
its architecture does present a reasonably fine-grained reification of the behaviours it supports.
The nature of the decomposition and meta-level framework explicitly supports reuse and
combination.

9 Low-level execution details are the domain of Apertos and so are quite well treated.

8.2 Performance

Our goals for performance fall into two categories; execution and design. On the one hand, to have
an effective system, one which people can actually use, we must have reasonable execution per-
formance. Applications which utilize CodA should not suddenly take several orders of magnitude
longer to run. In addition, the amount of overhead introduced should correspond to the meta-level
reification and modification done. That is, users should only pay for what they use.

On the other hand, usability ordesign performanceis related to how easy the system is to
program, extend and apply. To improve performance in this area the system must support a wide
range of behaviour descriptions and be extensible so as to facilitate completely new behaviours. It
should also use and support typical software engineering practices such as encapsulation and reuse.
Furthermore, when changes to the meta-level are applied, they must not require extensive changes
to the base-level code.

And so a tension arises — A system which is very fast but horribly difficult to use is not very
effective. The converse is also true. Beyond a certain point however, execution performance is
largely an engineering issue. The architectural design issues fall away leaving just implementation
and optimization details. Because of its fine granularity, CodA’s design inherently facilitates
incremental, deep and narrow implementation optimization. Far-reaching changes can be made
in very precise regions of the system without affecting other, unrelated areas (see Section 6.5.2).
Beyond this, the main focus of our work has been on design performance.

Design performance is difficult to show in quantitative terms. Chapter 7 is mostly concerned
with demonstrating CodA’s design performance by way of real-world examples. The most convinc-
ing evidence of CodA’s design performance is its integration with the underlying implementation
environment and the degree to which meta-level changes are isolated from the base-level code.
We have shown that real applications can be quite radically altered with negligible changes to the
original code. In some cases the changes required have no impact on the application semantics of
the objects (see Section 7.2). This is very high performance from the design and use point of view.

In addition, we have designed numerous object models describing widely differing behaviours
and have implemented these within the same architecture. Since the behaviours are encapsulated in
concrete objects, they can be directly applied and reused in many different situations. We have also
shown how the meta-level is completely extensible in that it facilitates the creation and attachment
of completely new behaviours to objects. In addition, all of these behaviours and models can be
freely combined.

CHAPTER 8. EVALUATION 103

8.2.1 Execution performance

CodA is intended as a platform for experimentation with object behaviour and object model design,
and application implementation. Its main mode of use is that developers prototype their applications
and object behaviours until they find those which meet their requirements. Then, if execution
performance is found lacking, the implementation of individual or groups of objects and meta-
components is optimized. In general, we have found that it is not appropriate to overly optimize
the architecture itself as this would limit our expressiveness and ability to reuse prior work.

We must however, recognize the need for eliminating the excessive costs of using a meta-level
architecture in the first instance (i.e., the prototyping phase). CodA approaches this in a number
of ways. First, the overall architecture is one of individual behaviour replacement. Meta-level
users only pay for that which they use. All non-reified and unmodified meta-level operations are
implemented by the underlying language environment’s native mechanisms.

Because of this, even without explicit optimizations, CodA andTj perform well within accept-
able bounds for experimental purposes. The worst case forfull reification of a complete message
send/receive cycle in the Smalltalk implementation is about an order of magnitude increase in
runtime. While this may seem high at first, readers are reminded that not all message exchanges
in a system need be reified and even those which are, need not be fully reified. In CodA you only
pay for what you reify. As a result, the performance overhead seen in actual applications will vary
substantially from this.

In real applications, while the actual performance ratios depend on the amount and type of
behaviour reification done, we have found that the general trend holds across a number of applica-
tions. Table 8.4 gives the performance of applications done with CodA andTj normalized to that
of the pure Smalltalk version.

Application Smalltalk CodA Tj

2D N-Body 1 (1.5s) 4 25
Waltz 1 1 (9.7s) 3 20
Waltz 2 1 (9.7s) 5 42

Table 8.4: CodA/Tj performance

TheSmalltalk column represents the fastest, optimized implementation of the problem directly
in Smalltalk. This column is the basis for the comparison and contains the normalized speed value
(e.g., 1) and the actual runtime in seconds. The performance data in the other columns is relative to
this plain Smalltalk performance. TheCodA column is the same as the Smalltalk implementation
but with certain objects fully reified and perhaps with new behaviours such as concurrency added.
The difference between these two columns largely represents the overhead of introducing explicit
meta-level components to the system. In cases where concurrency has been added there are also
process switching and scheduling costs which are unrelated to the cost of using CodA’s meta-level
architecture. TheTj column depicts the performance of the same application and code but with
certain objects physically distributed over a multiprocessor topology. Which objects are distributed

CHAPTER 8. EVALUATION 104

and how they are distributed depends on the problem itself.
We have done a number of these experiments with different applications and different configu-

rations. It would be redundant and confusing to show them all, so we have selected these examples
which are representative of the applications in general.

The N-Body (see Section 7.1) experiments were done with 1024 particles. The CodA runs
were done with concurrent particles and quadtree nodes.Tj runs had particles randomly distributed
randomly over 64 processors of a Fujitsu AP1000. Quadtree nodes were created on the processor
of the first particle they contained as the tree was built.

Both Waltz examples (see Section 7.2) were runs of the standard Waltz line labeling rule-base
on the same sets of lines. For Waltz 1, the CodA runs had fully reified facts. In theTj runs the
facts were both reified and distributed over 64 nodes of a Fujitsu AP1000. Waltz 2 follows suit
but reifies and distributes the actual implementation of the expert system (i.e., the Rete pattern
matching network).

Note that in the case of systems usingTj, by far the biggest factor affecting speed is inter-node
message passing time. In the current implementation this is dominated by the highly sophisticated
but somewhat costly object marshaling mechanism described in Section 5.2.2. For example, fully
general message marshaling of in the N-Body application takes an average of 3ms per message
with an average message length of 82 bytes.

We have implemented more efficient but less capable marshaling mechanisms, but in the end
found that the difference in expressive power is well worth the execution overhead. This may not be
true in all cases and users are free to substitute highly optimized marshaling components on a use-,
object-, class- or system-wide basis. The values given in Table 8.4 are derived from experiments
using the fully general marshaling mechanism.

The messaging times are also affected by the implementation problems pointed out in Sec-
tion 5.5. Namely that there is some amount of unnecessary copying due to library layering and that
message responsiveness is hampered by the lack of interrupts. It is expected that future versions
of the AP1000 OS will eliminate some of these problems and that that platform’s implementation
will see commensurate performance increases.

8.2.2 Performance perspective

To put CodA andTj’s performance in perspective with other systems we looked at RbCl and AL-
1/D, two systems which were shown to be similar in domain and capability in the preceding section.
In particular, we look at their speed with respect to distributed object operations to give a sense of
performance in distributed end-user applications.

In [18] the runtime overhead introduced by modifying two system behaviours with RbCl code is
discussed. It is shown that while the normal system takes 9.8ms to run a particular test, the modified
version takes 600ms. A factor of 61 slower. While the nature of the changes is not given in detail,
this is significantly more than we have seen in any of our experiments with remote messaging
reification. Interestingly however, RbCl allows the user to replace the RbCl-based meta-level
modifications with C++ based code and achieve a speed-up over the original unmodified meta-
level. This same capability is available inTj through specialization of an object’sMarshaling
component or the specification of optimized marshaling descriptors.

CHAPTER 8. EVALUATION 105

AL-1/D’s remote messaging is quite fast. It introduces just 30% overhead to standard Unix
stream data transfer. CodA andTj implemented in Smalltalk cannot match this performance because
they use a very general object marshaling scheme which trades runtime efficiency for flexibility.
As outlined above, programmers can easily modify the marshaling technique used for the system,
instances of a class, a particular instance or a particular use of an instance to regain the efficiency
but at the cost of flexibility. To date, our experiments with real applications have not indicated that
this is necessary.

8.3 Summary

In this chapter we show that CodA satisfies our goals for meta-level architecture design by rating its
support for various concrete properties of meta-level design. We also use this set of properties as a
basis for a comparison between CodA and existing architectures. While deriving absolute notions
of ‘better’ or ‘worse’ is difficult in this situation, CodA is shown to be broader based than existing
systems. This is due in part to the relatively narrow domain defined for many architectures.

We also show that CodA compares favorably to existing systems in terms of performance and
that, more importantly, the performance realized by end-users (e.g., time to run a program) is
reasonable. That is, the system as implemented in Smalltalk is usable for creating, testing and
applying new object behaviours.

We also note that runtime performance is not the only measure of usability. CodA is com-
pletely integrated with the Smalltalk programming environment and so can draw on its powerful
programming tools in support of the programmer’s efforts. Other systems, while integrated with
their implementation environment, are implemented in systems with relatively poor programmer
and software engineering support.

CodA has been shown to provide a rich meta-level architecture which is as capable as existing
systems when compared on specific points. This level of support is provided across a wide range
of capabilities. It was also found to be usable both in run-time and program-time performance.

Chapter 9

Conclusions

We have identified an important problem in software engineering and complex system development.
Namely that an object’s base-level semantics and its computational behaviour are not well separated
by current technology and techniques. This prevents users from building objects which have widely
varying computational behaviour. It also prevents users of object (class) libraries from (re)using
the libraries in paradigms for which they were not designed. These are severe restrictions in the
current environment of complex, widely scoped systems.

We have traced the problem back to the implicit inclusion of base-level language concepts
and constructs in the design of typical meta-level architecture. These architectures, whileopen
within their domain, are not open to large-scale deviations from their original behaviour. There
is no framework or infrastructure for supporting the addition of completely new concepts in an
integrated way.

To address this we developed CodA, a meta-level architecture which is free of these language-
based constructs and assumptions. CodA is based on anoperationaldecomposition of object
behaviour. This approach reifies into objects, the operations required for basic object execution.
As a result, it is necessarily fine-grained and independent of base-level language semantics.

The decomposition is set in a generic framework which supports the composition and com-
bination of the resultant components. Meta-levels, and thus object behaviour specifications, are
constructed by composing definitions of the various operations (e.g., message sending and method
lookup). The framework includes a powerful grouping and abstraction mechanism,object models,
which are used to construct representations of higher-level object behaviours such as concurrency,
distribution and classes.

We demonstrate that our approach is powerful in several ways. The design is implemented in,
and completely integrated with, an industrial-grade software development environment, Smalltalk.
Our ability to use the CodA features transparently and ubiquitously in the host environment is a
strong indication of its independence from base-level semantics.

Using this implementation we designed and built several non-trivial models of object be-
haviour which vary widely in their computational domains. Models such asDistributedObjects
andPortedObjects represent substantial deviations from normal object behaviour yet they are im-
plemented in the same framework, can co-exist and can even be combined and applied to the same
object. This is done with very little impact on the object’s base-level code.

106

CHAPTER 9. CONCLUSIONS 107

These models, and thus the framework as a whole, are shown to be useful in real-world situations
by applying them to the implementation of several applications. Each application demonstrates
a different aspect of CodA’s features and capabilities. In particular, the N-Body solver system,
highlights CodA as a good environment for algorithm and application prototyping. We show that
new behaviours (e.g., distribution) are easily added to applications and demonstrate how these are
monitored and varied to get different computational effects (e.g., remove bottlenecks).

Another very interesting result was obtained by applying CodA and some of its object
models to a real, non-trivial, third-party, commercial application; an expert system tool called
ENVY /Expert. We showed that we were able to add significant concurrency and distribution
throughoutENVY /Expert’s implementation and further, that our techniques could be applied even
within the language system (rule-based productions) defined byENVY /Expert. Analysis of the
effort and modifications required to effect these changes revealed that only 34 of approximately
1,000 methods needed to be added or modified. Of these, half are shown to beannotationswhich
have no effect on base-level semantics while the other half areadditionalmethods required only
for configuration and maintenance of the new behaviours.

A further non-trivial application, Vibes, a data analysis system, shows how CodA is useful
in designing and integrating applications with completely new computing demands. Rather than
applying our modifications to otherwise functioning applications as in the previous examples, Vibes
is designed around a new model of object-to-object interaction,PortedObjects. PortedObjects are
objects which interact via data flowing over channels and ports. By meta-level manipulation we
allow programmers to adapt and use normal Smalltalk objects in this new and radically different
domain. This style of programming is very useful to developers as it gives them immediate access
to a vast array of classes for use in their computing domain.

9.1 Perspectives and future work

The benefits we have shown are clearly derived from the exclusion of base-level language constructs
from the meta-level. That is, ouroperational decomposition. This decomposition technique enables
the description of behaviours which are completely foreign to the underlying object system. It also
allows us to construct a generic framework for organizing and managing these behaviours. We
have shown that theobject modelconcept is a superset of the organizational structures commonly
found in other systems (e.g., classes). Detailed evaluation of CodA relative to other systems finds
it to be at least as powerful in comparisons of individual points of capability and much broader
ranging in its support for the key properties of meta-level architectures.

With the operational approach in mind, we feel that good progress can be made in the area of
support for the automatic combination of meta-level concepts. This is, in general, an open problem
but we note that CodA has a number of inherent features which ease the combination problem. In
particular, the fine-grained encapsulation of potential points of conflict. This should be extended
with additional support for object model requirements identification and meta-component capability
specification. Using this as a basis, we can build systems to reason about and resolve conflicts
automatically. This design is compatible with, and complementary to, the current state-of-the-art
composition techniques such as those found in Moostrap [30].

CHAPTER 9. CONCLUSIONS 108

In addition, we are particularly interested in applying techniques related to partial evaluation
and dynamic compilation to the problem of meta-level combination and optimization. We envisage
a system where distinct meta-components are used for prototyping object meta-levels but once the
best meta-level design for a particular situation is determined, the components arecompressedinto
one (or a small number of) objects by partial evaluation and dynamic compilation. By remembering
something of their original form, compressed meta-levels could bedecompressedback into their
flexible, modifiable form.

Bibliography

[1] G. Agha. Actors: A Model of Concurrent Computation in Distributed Systems. Series in
Artificial Intelligence. MIT Press, 1986.

[2] Z. Aral and I. Gertner. Non-intrusive and interactive profiling in Parasight.Proceedings of the
ACM/SIGPLAN PPEALS (Parallel Programming: Experience with Applications, Languages
and Systems) 1988, published in ACM SIGPLAN NOTICES, 23(9):21–30, September 1988.

[3] H. E. Bal and M. F. Kaashoek. Object distribution in orca using compile-time and run-time
techniques. InProceedings of the Conference on Object-Oriented Programming, Systems,
Languages and Applications (OOPSLA), pages 162–177, Sept. 1993. Published as ACM
SIGPLAN Notices, volume 28, number 9.

[4] J. Barnes and P. Hut. A hierarchicalO(N logN) force-calculation algorithm. Nature,
324:446–449, 1986.

[5] J. K. Bennett, J. B. Carter, and W. Zwaenepoel. Munin: Distributed shared memory based on
type-specific memory coherence. InProceedings of the ACM SIGPLAN Symposium on Prin-
ciples and Practice of Parallel Programming PPOPP, pages 168–176, Mar. 1990. Published
as ACM SIGPLAN Notices, volume 25, number 3.

[6] D. Brant, T. Grose, B. Lofaso, and D. Miranker. Effects of Database Size on Rule System
Performance:Five Case Studies. InProceedings of the 17th International Conference on Very
Large Data Bases (VLDB), 1991.

[7] J.-P. Briot. Actalk: A testbed for classifying and designing actor languages in the Smalltalk-
80 environment. In S. Cook, editor,Proceedings ECOOP ’89, pages 109–129, Nottingham,
July 1989. Cambridge University Press.

[8] J.-P. Briot and P. Cointe. Programming with explicit metaclasses in Smalltalk-80. InPro-
ceedings of OOPSLA ’89, pages 419–431, October 1989.

[9] S. Chiba. A metaobject protocol for real programmers. InProceedings of OOPSLA ’95, 1995.
To appear.

[10] P. Cointe. CLOS and Smalltalk: A comparison. In A. Pæpcke, editor,Object-oriented
programming: The CLOS perspectives, pages 215–250. MIT Press, 1993.

109

BIBLIOGRAPHY 110

[11] J. des Rivieres and B. C. Smith. The implementation of procedurally reflective languages.
In Conference Record of the 1984 ACM Symposium on Lisp and Functional Programming,
1984.

[12] P. Deutsch, 1992. Private communication.

[13] C. Forgy. Rete: A fast match algorithm for the many pattern/many object pattern match
problem.Artificial Intelligence, (19):17–37, 1982.

[14] R. J. Fowler.Decentralized object finding using forwarding addresses. PhD thesis, University
of Washington, 1985. Also available as Dept. of Computer Science Tech Report 85-12-1.

[15] B. Garbinato, R. Guerraoui, and K. R. Mazouni. Distributed programming in GARF. In
Proceedings of the ECOOP Workshop on Object-Based Distributed Programming, LNCS
791, pages 225–239. Springer Verlag, July 1993.

[16] Hewlett-Packard.Distributed Smalltalk User’s Guide.

[17] W. C. Hsieh, P. Wang, and W. E. Wiehl. Computation migration: Enhancing locality for
distributed-memory parallel systems. InProceedings of the ACM SIGPLAN Symposium
on Principles and Practice of Parallel Programming PPOPP, pages 239–248, July 1993.
Published as ACM SIGPLAN Notices, volume 28, number 7.

[18] Y. Ichisugi. A reflective object-oriented concurrent language for distributed environments.
PhD thesis, Department of Information Science, University of Tokyo, 1993.

[19] Y. Ichisugi, S. Matsuoka, and A. Yonezawa. RbCl: A reflective object-oriented concur-
rent language without a run-time kernel. InProceedings of the International Workshop on
Reflection and Meta-level Architectures, pages 24–35, November 1992. Tokyo, Japan.

[20] Y. Ishikawa. Reflection factilities and realistic programming.SIGPlan Notices, 26(8):101–
110, 1992.

[21] Y. Ishikawa and H. Okamura. A new reflective architecture: AL-1 approach. InProceedings
of the OOPSLA ’91 Workshop on Reflection and Meta-level Architectures in Object-Oriented
Programming, October 1991.

[22] E. Jul, H. Levy, N. Hutchinson, and A. Black. Fine-grained mobility in the emerald system.
ACM Transactions on Computer Systems, 6(1):109–133, Feb. 1988.

[23] G. Kiczales, J. des Rivieres, and D. Bobrow.The Art of the Metaobject Protocol. MIT Press,
Cambridge, Massachusetts, 1991.

[24] P. Maes. Concepts and experiments in computational reflection. InProceedings of OOPSLA
’87, pages 147–155, October 1987. Orlando.

BIBLIOGRAPHY 111

[25] H. Masuhara, S. Matsuoka, T. Watanabe, and A. Yonezawa. Object-oriented concurrent
reflective languages can be implemented efficiently. InProceedings OOPSLA ’92, ACM
SIGPLAN Notices, pages 127–147, October 1992. Published as Proceedings OOPSLA ’92,
ACM SIGPLAN Notices, volume 27, number 10.

[26] J. McAffer. On the monitoring and analysis of object-oriented systems. Position paper to the
ACM SIGPlan OOPSLA Workshop on Visualization of OO systems, Oct. 1993.

[27] J. McAffer. Meta-level programming with CodA. InProceedings of the European Conference
on Object-Oriented Computing (ECOOP), LNCS 952, pages 190–214. Springer Verlag, Aug.
1995.

[28] J. McAffer and J. Duimovich. Actra - An industrial strength concurrent object-oriented
programming system.ACM SIGPLAN OOPS Messenger, 2(2):82–85, Apr. 1989. Proceedings
of the ACM SIGPlan OOPSLA Workshop on Object-Based Concurrent Programming.

[29] R. Milner. The polyadicπ -calculus: A tutorial. InLogic and Algebra of Specification.
Springer Verlag, 1992.

[30] P. Mulet, J. Malenfant, and P. Cointe. Towards a methodology for explicit composition of
metaobjects. InProceedings of OOPSLA ’95, October 1995. To appear.

[31] Object Management Group.Object Management Architecture Guide, 1992. OMG TC Doc-
ument Number 92.12.1 Revision 2.0.

[32] The open implementations workshop proposal and responses. Available on internet at:
http://www.parc.xerox.com/OI/.

[33] H. Okamura and Y. Ishikawa. Object location control using meta-level programming. In
Proceedings of the European Conference on Object-Oriented Programming (ECOOP), LNCS
821, pages 299–319. Springer Verlag, July 1994.

[34] H. Okamura, Y. Ishikawa, and M. Tokoro. AL-1/D: A distributed programming system
with multi-model reflection framework. InProceedings of the International Workshop on
Reflection and Meta-level Architectures, pages 36–47, November 1992. Tokyo, Japan.

[35] G. A. Pascoe. Encapsulators: A new software paradigm in smalltalk-80. InProceedings
OOPSLA ’86, pages 341–346, November 1986. Published as ACM SIGPLAN Notices,
volume 21, number 11.

[36] D. A. Reed. An overview of the Pablo performance analysis environment. Department of
Computer Science, University of Illinois, 1992.

[37] M. Shapiro, Y. Gourhant, S. Habert, L. Mosseri, M. Ruffin, and C. Valot. SOS: An object-
oriented operating system – Assesment and perspectives.Computer Systems, 2(4):287–337,
Fall 1989.

BIBLIOGRAPHY 112

[38] T. Shimizu, T. Horie, and H. Ishihata. Low-latency message communication for the AP1000.
In Proceedings of ISCA, pages 288–297, 1992.

[39] Silicon Graphics Inc.Explorer User’s Guide, 1992.

[40] B. C. Smith. Reflection and semantics in lisp. InProceedings of ACM POPL ’84, pages
23–35, 1984.

[41] Stardent Computer Inc.Application Visualization System, User’s Guide, 1989.

[42] A. S. Tanenbaum, H. E. Bal, and M. F. Kaashock. Programming a distributed system us-
ing shared objects. InProceedings of the International Symposium on High Performance
Distributed Computing, pages 5–12, July 1993.

[43] Y. Yokote. The Apertos reflective operating system: The concept and its implementation. In
Proceedings OOPSLA ’92, ACM SIGPLAN Notices, pages 414–434, October 1992. Published
as Proceedings OOPSLA ’92, ACM SIGPLAN Notices, volume 27, number 10.

[44] Y. Yokote, F. Teraoka, and M. Tokoro. A reflective architecture for an object-oriented dis-
tributed operating system. In S. Cook, editor,Proceedings ECOOP ’89, pages 89–106,
Nottingham, July 1989. Cambridge University Press.

[45] M. W. Young. Exporting a user interface to memory management from a communication-
oriented operating system. Technical Report CMU-CS-89-202, Carnegie Mellon University,
1989.

Appendix A

Default Meta-component code

The following are the default implementations for many of the methods mentioned in the body
of the paper. They are given as a point of reference so readers can judge the amount of change
required to effect the behaviours described.

DefaultSend»send: message for: base
^message receiver meta accept

accept: message for: message receiver

DefaultSend»reply: result to: message for: base
| reply |
reply := message asReply.
reply arguments: (Array with: result).
^reply receiver meta accept

acceptReply: reply for: reply receiver

DefaultAccept»accept: message for: base
^base meta queue enqueue: message for: base

DefaultAccept»acceptReply: message for: base
^base meta execution processImmediately: message for: base

DefaultQueue»enqueue: message for: base
^base meta execution process: message for: base

DefaultQueue»nextFor: base
^nil

DefaultReceive»receiveFor: base
^base meta queue nextFor: base

DefaultProtocol»methodFor: message for: base
^self lookupTable at: message selector

113

APPENDIX A. DEFAULT META-COMPONENT CODE 114

DefaultExecution»execute: method with: arguments for: base
^method executeFor: base withArguments: arguments

DefaultExecution»process: message for: base
| method |
method := base meta protocol methodFor: message for: base.
^self execute: method with: message args for: base

DefaultExecution»processImmediately: message for: base
^self process: message for: base

DefaultState»at: id for: base
^self slots at: id

DefaultState»at: id put: value for: base
^self slots at: id put: value

Appendix B

Example code

The following sections the code for two of the applications dicussed in Chapter 7, the N-Body
problem and the expert system. Rather than giving all the code, we attempt to highlight the areas
where changes were required during the addition of concurrency and distribution. Obvious and
accessor (get and set) methods have been elided.

B.1 N-Body

Object
Particle (’position mass velocity acceleration’)
QuadTree (’area children data’)
Solver (’tree particles’)

Figure B.1: N-Body application class hierarchy

B.1.1 Particle

Instance methods

accelerationOn: pos
"Answer the acceleration caused by the receiver exerting a Newtonian force
something at pos."

| distance |
distance := self position dist: pos.
^(self position - pos) * self mass / (distance raisedTo: 3)

calculateAccelerationIn: root
self acceleration: (root forceOn: self position)

115

APPENDIX B. EXAMPLE CODE 116

mergeWith: particle
| totalMass |
position isNil ifTrue: [

position := particle position.
mass := particle mass.
velocity := particle velocity.
^self].

velocity := velocity + particle velocity.
totalMass := mass + particle mass.
position := particle weightedPosition + self weightedPosition / totalMass.
mass := totalMass

moveOver: dt
"move the receiver using acceleration over the time frame denoted by dt"
| newVelocity dt2 |
dt2 := dt / 2.0.
newVelocity := velocity + (acceleration * dt).
position := position + (velocity * dt2) + (newVelocity * dt2).
velocity := newVelocity.
acceleration := 0 @ 0

weightedPosition
^position * mass

B.1.2 QuadTree

Class methods

for: object in: area
^self new

area: area;
data: object

Instance methods

add: object
| cPos oPos |
(object isNil

or: [(self area containsPoint: (oPos := object position)) not])
ifTrue: [^self].

self isEmpty ifTrue: [^self data: object].
self isLeaf ifTrue: [

(cPos := self data position) = oPos ifTrue: [^self].
(self childFor: self data at: cPos.
self data: nil].

(self childFor: object at: oPos

APPENDIX B. EXAMPLE CODE 117

addAll: objects
objects do: [:object | self add: object]

childAreaFor: position
| x y a |
a := self area.
x := a left + a right / 2.0.
y := a bottom + a top / 2.0.
^position x < x

ifTrue: [
position y < y

ifTrue: [^a origin corner: x @ y]
ifFalse: [^a origin x @ y corner: x @ a corner y]]

ifFalse: [
position y < y

ifTrue: [^x @ a origin y corner: a corner x @ y]
ifFalse: [^x @ y corner: a corner]]

childCount
^4

childFor: object at: position
"Answer a child to hold object at position. If such a child does not
exist then create one and answer the new child."

| child index |
child := self children at: (index := self childIndexFor: position).
child isNil ifFalse: [^child].
child := self class for: object in: (self childAreaFor: position).
^self children at: index put: child

childIndexFor: position
| x y a |
a := self area.
x := a left + a right / 2.0.
y := a bottom + a top / 2.0.
position x < x

ifTrue: [position y < y ifTrue: [^1] ifFalse: [^4]]
ifFalse: [position y < y ifTrue: [^2] ifFalse: [^3]]

containsPoint: point
^self area containsPoint: point

do: block
| result |
self isEmpty ifTrue: [^self].

APPENDIX B. EXAMPLE CODE 118

self isLeaf ifTrue: [^block value: self data].
children do: [:c | c isNil ifFalse: [result := c leafDo: block]].
^result

forceOn: position
| result |
self isEmpty ifTrue: [^0 @ 0].
self isLeaf ifTrue: [

^(self containsPoint: position)
ifTrue: [0 @ 0]
ifFalse: [self data accelerationOn: position]].

((self containsPoint: position) not and: [self isFarEnough: position])
ifTrue: [^self data accelerationOn: position].

result := 0 @ 0.
self children do: [:c |

c isNil ifFalse: [result := result + (c forceOn: position)]].
^result

isEmpty
^data isNil and: [self isLeaf]

isFarEnough: position
^self area width < ((position dist: self data position) * 0.5)

isLeaf
self children do: [:c | c isNil ifFalse: [^false]].
^true

prepare
self isLeaf ifTrue: [^self].
self data: (

VirtualParticleClass new mass: 0.0 position: nil velocity: 0.0).
self children do: [:c |

c isNil ifFalse: [
c prepare.
self data mergeWith: c data]]

B.1.3 Solver

addParticle: p
self particles add: p.
^self tree add: p

iterate: count
count timesRepeat: [

self stepOver: 0.3.

APPENDIX B. EXAMPLE CODE 119

self updateTree]

calculateAccelerations
self particles do: [:particle |

particle calculateAccelerationIn: self tree]

moveParticlesOver: dt
self particles do: [:particle | particle moveOver: dt]

stepOver: dt
self tree prepare.
self calculateAccelerations.
self moveParticlesOver: dt

updateTree
self tree: (self tree class for: nil in: self tree area).
self tree addAll: self particles

B.1.4 Distributed QuadTree

The following are the methods which were changed or added to introduce distribution and concur-
rency to the application. Each method is marked with its change classification (see Section 6.5.1)
and the actual changes (if any) are noted by a-> in the left margin.

Class methods

"Required Annotation"
for: object in: area
-> ^self newForkConcurrent

area: area;
data: object

"Required Addition"
TjreplicationDescriptorFor: anObject

"Answer a descriptor which copies and replicates the default slots."
^#((true rep true) (|| clearDataAndChildren) (-> add:))

Instance methods

"Required Annotation"
add: object

| cPos oPos d |
(object isNil or: [

(self area containsPoint: (oPos := object position)) not])
ifTrue: [^self].

APPENDIX B. EXAMPLE CODE 120

self isEmpty ifTrue: [^self data: object].
self isLeaf ifTrue: [

d := self data.
(cPos := d position) = oPos ifTrue: [^self].

-> self childFor: d at: cPos in: (d meta state spaceFor: d).
self data: nil].

-> (self childFor: nil at: oPos in: (object meta state spaceFor: object))
-> <> (M b add: object)

"Required Addition"
childFor: object at: position in: space

"Answer a child to hold object at position. If such a child does not
exist then create one in space and answer the new child."

| child index |
child := self children at: (index := self childIndexFor: position).
child isNil ifFalse: [^child].
child :=

-> (self class in: space) for: object in: (self childAreaFor: position).
^self children at: index put: child

"Optional Semantic. Enable concurrency using Fork/Join iteration"
forceOn: position

| accels |
self isEmpty ifTrue: [^0 @ 0].
self isLeaf ifTrue: [

^(self containsPoint: position)
ifTrue: [0 @ 0]
ifFalse: [self data accelerationOn: position]].

((self containsPoint: position) not and: [self isFarEnough: position])
ifTrue: [^self data accelerationOn: position].

-> accels := OrderedCollection new.
-> self children
-> do: [:c | c isNil ifFalse: [accels add: (c forceOn: position)]].
-> ^accels inject: 0 @ 0 into: [:result :a | result + a]

"Optional Semantic. Enable concurrency using Fork/Join iteration"
prepare

| kids |
self isLeaf ifTrue: [^self].
self data: (

VirtualParticleClass new mass: 0.0 position: nil velocity: 0.0).
-> kids := OrderedCollection new.
-> self children do: [:c | c isNil ifFalse: [kids add: c prepare]].
-> kids do: [:kid | self data mergeWith: kid data]

APPENDIX B. EXAMPLE CODE 121

B.1.5 Distributed Solver

Class methods

"Required Addition"
TjreplicationDescriptorFor: anObject

"Answer a descriptor which copies only the tree slot. The default."
^#((true nil)

(|| calculateAccelerations moveParticlesOver: addParticlesTo:))

"Required Addition"
TjreplicatingReplicationDescriptorFor: anObject

"Answer a descriptor which replicates the tree slot."
^#((rep nil)

(|| calculateAccelerations moveParticlesOver: addParticlesTo:))

TjClassArgUseSpecs
"Answer the known argument usage for the receiver’s methods. This
method can be auto- or hand-generated."

^#((initialize:using: (ref (nil nil nil true true deep nil true deep))))

Instance methods

"Required Structural. Give a hook for replica multicasting."
addParticlesTo: t

particles synchronousDo: [:p | t add: p]

"Required Annotation. Make into a synchronous operation."
-> self particles synchronousDo: [:particle |

particle calculateAccelerationIn: self tree]

"Required Annotation"
stepOver: dt
-> self tree <> (M b prepare).
-> self <> (M b calculateAccelerations).
-> self <> (M b moveParticlesOver: dt)

"Required Structural"
updateTree

self tree: (self tree class for: nil in: self tree area).
-> self addParticlesTo: self tree

B.1.6 Invocations

Given the above classes and methods we can create various configurations of the N-Body problems.
Below are four helper methods used for creating and initializing various objects. Following those

APPENDIX B. EXAMPLE CODE 122

are four methods which create different problem topologies. Note that thespec argument is an
instance ofProblemDescription which is just a convenient repository for configuration state.

Solver class helper methods

instantiate: spec
"Make a solver which is replicated in space and the root of the tree is
replicated in spaces as well."

| selector problem |
selector := self problemSelectorFor: spec.
problem := self perform: selector with: spec.
self initialize: problem using: spec.
^problem

createParticle: particleClass x: x y: y
| p |
p := particleClass new.
p

mass: Random next * 100
position: (Random next * x) @ (Random next * y)
velocity: (Random next * 6 - 3) @ (Random next * 6 - 3).

^p

initialize: problem using: spec
| x y p |
x := spec dimensions width.
y := spec dimensions height.
spec particleCount timesRepeat: [

p := self createParticle: spec particleClass x: x y: y.
problem <> (M b addParticle: p)]

problemSelectorFor: spec
^(’createProblem’, spec name, ’:’) asSymbol

Problem creation methods

createProblem1: spec
"Make a solver which only distributes the tree and does no caching or
replication."

| solver |
solver := spec solverClass newForkConcurrent.
solver tree: (spec treeClass for: nil in: spec dimensions).
^solver

createProblem2: spec
"Make a solver which replicates the tree root in spaces."

APPENDIX B. EXAMPLE CODE 123

| solver tree |
solver := spec solverClass newForkConcurrent.
solver tree: (tree := spec treeClass for: nil in: spec dimensions).
tree meta replication

replicateInAll: spec spaces using: #default for: tree.
^solver

createProblem3: spec
"Make a solver which is replicated in spaces but the tree is not."
| solver |
solver := spec solverClass newForkConcurrent.
solver tree: (spec treeClass for: nil in: spec dimensions).
solver meta replication

replicateInAll: spec spaces using: #default for: solver.
^solver

createProblem4: spec
"Make a solver which is replicated in space and the root of the tree is
replicated in spaces. Note the #replicating in the replicateInAll:
message."

| solver |
solver := spec solverClass newForkConcurrent.
solver tree: (spec treeClass for: nil in: spec dimensions).
solver meta replication

replicateInAll: spec spaces using: #replicating for: solver.
^solver

B.2 Expert system

This section outlines the new and annotated code required to convert the original sequential unipro-
cessor expert system to a concurrent distributed system (see Section 7.2 for more details on the
application itself).

B.2.1 Annotations

Concurrency control

The default activity for an active object is to simply loop getting messages and processing them.
Inference engines are slightly different in that they are essentially compute servers. Ideally they
would just continually process activated rules but they must also admit external control in a graceful
way. Here we describe an engine which gives priority to external messages before running any
available activations.

InferenceEngine class»CodAactivityBlockFor: anObject
"Describe the basic execution pattern for active InferenceEngines"

APPENDIX B. EXAMPLE CODE 124

^[| message result |
[true] whileTrue: [

-> anObject isInRunningState
-> ifTrue: [

message := anObject meta receive nonBlockingReceiveFor: anObject.
-> message isNil
-> ifTrue: [anObject runOneStep]
-> ifFalse: [

result := anObject meta execution process: message for: anObject.
anObject meta send reply: result to: message for: anObject]]

ifFalse: [
message := anObject meta receive receiveFor: anObject.
result := anObject meta execution process: message for: anObject.
anObject meta send reply: result to: message for: anObject]]]

Public interface specification

In creating an active object we need to specify which of its methods are to be made available
for public/concurrent use. We can specify all methods, no methods or a subset of the object’s
existing methods. In many senses, the methods specified as public here are equivalent to Emerald’s
monitored methods. Senders of these messages are guaranteed that the methods will be executed
in a concurrency controlled and safe way.

RuleAgenda class»CodApublicMethods
"Declare the public interface for instances of the recevier"
^super CodApublicMethods

addAll: #(addActivation: removeActivation: remove: selectAndRemove:
removeSelection);

yourself

InferenceEngine class»CodApublicMethods
"Declare the public interface for instances of the recevier"
^super CodApublicMethods

addAll: #(resume run step stop suspend stepEngineWithActivations:
acceptNewObject: modifyObject: removeObject:);

yourself

GeneralNode class»CodApublicMethods
"Declare the public interface for instances of the recevier"
^super CodApublicMethods

addAll: #(clearWithEngine: acceptNewToken:
acceptNewObject:withClass:fromEngine: removeObject:withClass:);

yourself

LocalTrigNoVarNode class»CodApublicMethods
"Declare the public interface for instances of the recevier"

APPENDIX B. EXAMPLE CODE 125

^super CodApublicMethods
addAll: #(acceptNewObjectModified:withClass:);
yourself

LocalTrigOneVarNode class»CodApublicMethods
"Declare the public interface for instances of the recevier"
^super CodApublicMethods

addAll: #(acceptNewObjectModified:withClass: removeObject:withClass:);
yourself

LocalTrigVarNode class»CodApublicMethods
"Declare the public interface for instances of the recevier"
^super CodApublicMethods

addAll: #(acceptNewObjectModified:withClass:);
yourself

NoVarNode class»CodApublicMethods
"Declare the public interface for instances of the recevier"
^super CodApublicMethods

addAll: #(removeObject:withClass:);
yourself

Marshaling, Replication and Migration descriptors

Many objects have special requirements when they are communicated between processors. These
requirements vary depending on the use-case. For example, an object’s default marshaled repre-
sentation may not be effective as a migration representation. To cope with this we allow classes
to be annotated with default descriptors for various operations such as marshaling and migration.
The methods below set out such defaults.

Shell»addFactObject: anObject
"Before asserting anObject, modify its marshaling descriptor to cache
its class when passed as a reference."

-> anObject meta marshaling descriptor: #classed.
engine acceptNewObject: anObject.
engin resume

Configuration class»TjmigrationDescriptorFor: anObject
"Define the default `shape’ of receiver instances when they are migrated"
^TjMarshalDescriptor reg: #(true nil true nil nil true true)

Implementation class»TjmigrationDescriptorFor: anObject
"Define the default `shape’ of receiver instances when they are migrated"
^TjMarshalDescriptor reg: #(true true true)

FactBaseImplementation class»TjmigrationDescriptorFor: anObject

APPENDIX B. EXAMPLE CODE 126

"Define the default `shape’ of receiver instances when they are migrated"
^TjMarshalDescriptor reg: #(true -2 -2)

RuleBaseImplementation class»TjmigrationDescriptorFor: anObject
"Define the default `shape’ of receiver instances when they are migrated"
^TjMarshalDescriptor reg: #(true deep true -2 shallow)

InferenceEngine class»TjmigrationDescriptorFor: anObject
"Define the default `shape’ of receiver instances when they are migrated"
^TjMarshalDescriptor reg: #(

true true true shallow nil true true shallow true deep true deep)

Activation class»TjmigrationDescriptorFor: anObject
"Define the default `shape’ of receiver instances when they are migrated"
^TjMarshalDescriptor reg: #(true true true true)

GeneralNode class»TjmigrationDescriptorFor: anObject
"Define the default `shape’ of receiver instances when they are migrated"
^TjMarshalDescriptor

reg: #(true true true shallow -2 shallow -2 true true shallow true)

Token class»TjisImmutable: object
"Declare whether or not instances of the receiver are immutable"
^true

Token class»TjmarshalValueOnly
"Declare if receiver instances must only be marshaled as values"
^true

B.2.2 Additions

Initialization

The following methods are used to traverse an expert system’s implementation after it has been
created and install or remove concurrency. Despite the name ‘initialize’, these methods can actually
be used after the system is initially created to dynamically change the way it runs.

Shell»initializeActive
"Initialize the receiver (and its depends) to function actively"
self configuration inferenceEngine initializeActive

InferenceEngine»initializeActive
"Initialize the receiver (and its depends) to function actively"
self context initializeActive.
self ruleAgenda initializeActive

APPENDIX B. EXAMPLE CODE 127

RuleAgenda»initializeActive
"Initialize the receiver (and its depends) to function actively"
(self meta concurrentFor: self) ifTrue: [self meta execution resume]

Implementation»initializeActive
"Initialize the receiver (and its depends) to function actively"
self ruleBaseImplementation initializeActive

RuleBaseImplementation»initializeActive
"Initialize the receiver (and its depends) to function actively"
self implementation do: [:node | node initializeActive]

GeneralNode»initializeActive
"Initialize the receiver (and its depends) to function actively"
self followingNode notNil ifTrue: [self followingNode initializeActive].
(self meta concurrentFor: self) ifTrue: [self meta execution resume]

Shell»initializePassive
"Initialize the receiver (and its depends) to function passively"
self configuration inferenceEngine initializePassive

InferenceEngine»initializePassive
"Initialize the receiver (and its depends) to function passively"
self context initializePassive.
self ruleAgenda initializePassive

RuleAgenda»initializePassive
"Initialize the receiver (and its depends) to function passively"
self meta concurrentUninitializationFor: self

Implementation»initializePassive
"Initialize the receiver (and its depends) to function passively"
self ruleBaseImplementation initializePassive

RuleBaseImplementation»initializePassive
"Initialize the receiver (and its depends) to function passively"
self implementation do: [:node | node initializePassive]

GeneralNode»initializePassive
"Initialize the receiver (and its depends) to function passively"
self followingNode notNil ifTrue: [self followingNode initializePassive].
self meta concurrentUninitializationFor: self

APPENDIX B. EXAMPLE CODE 128

Local remote object processing

The following methods enable the local processing of some generic methods available to all objects.
These methods are copies of the ones found in classObject in the expert system’s implementation.

TjRemoteReference»exist
"By default an object exists and an UndefinedObject does not exist.
Since the receiver is a remote object and nil cannot be remote we can
answer this question immediately."
^true

TjRemoteReference»goFor: anInferenceEngine
"Add the receiver as a new fact in the context of anInferenceEngine."
anInferenceEngine acceptNewObject: self

TjRemoteReference»modifiedFor: anInferenceEngine
"The receiver is a modified fact in the context of anInferenceEngine."
anInferenceEngine modifyObject: self

TjRemoteReference»removeFor: anInferenceEngine
"Remove the receiver from the context of anInferenceEngine."
anInferenceEngine removeObject: self

