
Typechecking and Modules
for Multi-Methods

Craig Chambers and Gary T. Leavens

Department of Computer Science and Engineering, FR-35
University of Washington

Seattle, Washington 98195 USA

Technical Report 95-08-05
August 1995

Typechecking and Modules for Multi-Methods

Craig Chambers

Department of Computer Science and Engineering
309 Sieg Hall, FR-35

University of Washington
Seattle, Washington 98195

(206) 685-2094; fax: (206) 543-2969
chambers@cs.washington.edu

UW CS&E Technical Report 95-08-05

Abstract

Two major obstacles hindering the wider acceptance of multi-methods are concerns over the lack of
encapsulation and modularity and the absence of static typechecking in existing multi-method-based
languages. This paper* addresses both of these problems. We present a polynomial-time static typechecking
algorithm that checks the conformance, completeness, and consistency of a group of method
implementations with respect to declared message signatures. This algorithm improves on previous
algorithms by handling separate type and inheritance hierarchies, abstract classes, and graph-based method
lookup semantics. We also present a module system that enables independently-developed code to be fully
encapsulated and statically typechecked on a per-module basis. To guarantee that potential conflicts between
independently-developed modules have been resolved, a simple well-formedness condition on the modules
comprising a program is checked at link-time. The typechecking algorithm and module system are
applicable to a range of multi-method-based languages, but the paper uses the Cecil language as a concrete
example of how they can be applied.

1 Introduction
Multiple dispatching of multi-methods as found in CLOS [Bobrowet al. 88, Steele 90, Paepcke 93] and
Cecil [Chambers 92, Chambers 93] is a more general form of message passing (dynamic binding) than
traditional single dispatching of receiver-based methods as found in Smalltalk [Goldberg & Robson 83] and
C++ [Stroustrup 91] or static overloading of functions as found in C++, Ada [Ada 83, Barnes 91], and
Haskell [Hudaket al. 92]. With multiple dispatching, method lookup can depend on the run-time types or
classes of any subset of the arguments to a message, not just the run-time class of the single receiver
argument as in singly-dispatched systems nor just the arguments’ compile-time types as in systems with
static overloading.

To illustrate, consider the following matrix multiplication implementations, written in a close
approximation to Cecil syntax:†

-- matrix is the abstract superclass of all matrix implementations
abstract type matrix;

method fetch(m:matrix, row:int, col:int):num {
abstract } -- this method must be provided by concrete descendants

method +(m1:matrix, m2:matrix):matrix {
... } -- add matrices, invoking implementation-specificfetch functions to fetch elements

* An earlier version of this paper appeared in the proceedings ofOOPSLA ’94.
†For simplicity, in this paper we ignore issues relating to parameterized types. Hence the matrix is a matrix of numbers

rather than being parameterized by the element type as it really is in Cecil.

Gary T. Leavens

Department of Computer Science
229 Atanasoff Hall

Iowa State University
Ames, Iowa 50011-1040

(515) 294-1580
leavens@cs.iastate.edu

ISU CS Technical Report #95-19

2

Typechecking and Modules for Multi-Methods Chambers & Leavens

method *(m1:matrix, m2:matrix):matrix {
... } -- multiply matrices, invoking implementation-specificfetch functions to fetch elements

concrete type dense_matrix isa matrix;
method fetch(m @dense_matrix, row:int, col:int):num {

... } -- the implementation of fetching for a dense matrix
method +(m1 @dense_matrix, m2 @dense_matrix):matrix {

... } -- an optimized implementation of+ for two dense matrices

concrete type sparse_matrix isa matrix;
method fetch(m @sparse_matrix, row:int, col:int):num {

... } -- the implementation of fetching for a sparse matrix

let a, b: matrix := ...;
print(a + b*b); -- invoke most specific+ and* functions, depending on run-time classes ofa andb

Some of the formals in the above methods are declared using the formname@specializer . Such a
formal is called aspecialized formal and is subject to dynamic dispatching. A method is only applicable to
actual argument objects that descend from the formal’sargument specializer class named after the@
symbol. Moreover, argument specializers determine the overriding relationships among methods: methods
with more specific argument specializers override methods with less specific argument specializers.

Unspecialized formals are treated as being specialized on a distinguishedany class that is an ancestor of all
other classes; an unspecialized formal applies to all actual argument objects and is less specific than any
specialized formal. An unspecialized formal may still be declared to be of a particular type, using the
notationname: type . Such a type declaration specifies theinterface required of actual arguments but
places no constraints on theirimplementation. Static type checking must guarantee that these interface
requirements are satisfied.

In the matrix arithmetic example, the method* is unspecialized and hence acts like a normal function. The
methods namedfetch are specialized on their first argument and so emulate singly-dispatched receiver-
based methods. The first+ method does not specialize on any arguments, and so it acts like a default method,
while the second+ method is specialized on multiple arguments. The ability of each method individually to
specialize on any subset of its arguments integrates unspecialized, singly-dispatched, and multiply-
dispatched methods in a uniform framework, facilitating the definition of algebraic data types with binary
operations and other kinds of operations where knowledge of or access to the representations of several
arguments is needed.

Unfortunately, the potential increased expressiveness of multi-methods is hampered by several drawbacks
that limit their wider acceptance:

• The programming style often associated with multi-methods, based on generic functions, is viewed by
many as contrary to the object-centered programming style employed in singly-dispatched object-
oriented languages. This problem was addressed in an earlier paper that described a programming
methodology, language design, and programming environment for multi-methods that attempts to
preserve much of the flavor of object-centered programming [Chambers 92].

• The semantics of multi-method lookup is considered to be very complicated. This problem also was
addressed in the earlier paper, where a simple lookup semantics was presented which was based on
deriving the partial ordering over methods from the partial ordering over their specializers. This
semantics considers ambiguously-defined multi-methods to be a programming error, unlike the CLOS
semantics which attempts to resolve such ambiguities automatically.

• Multi-methods might be slower to select and invoke than singly-dispatched methods. Work is
progressing on this front, however [Chen & Turau 94, Amielet al. 94], and we expect that the run-time

3

Typechecking and Modules for Multi-Methods Chambers & Leavens

performance difference between singly- and multiply-dispatched systems to become negligible in the
near future.

• Multi-methods are seen to prevent object encapsulation. One approach to solving this problem was
presented in the earlier paper, but that approach did not allow privileged access to be restricted to a
single, well-defined area of program text.

• The few static type systems that have been designed for multi-method-based languages have dealt with
a fairly restrictive language model. Recent multi-method languages contain features such as abstract
classes, mixed specialized and unspecialized formals, partially-ordered multi-method definitions, and
independent inheritance and subtyping graphs, and these features cannot be handled by previously
proposed static type systems for multi-method-based languages.

• With multi-methods, independently-developed libraries cannot be typechecked completely separately,
but instead must be typechecked at link-time. Similarly, code written in one library might interact
unintentionally with code written in another independently-developed library, leading to message
lookup errors that did not exist when the libraries were separate.

In this paper we address the last three points above:

• We present a type system for languages with multi-methods and separate subtyping and code
inheritance, withsignatures specifying the set of legal messages (and required implementations) in a
program.

• We describe a polynomial-time type checking algorithm that guarantees statically the absence of
message lookup errors for a much more general and realistic class of languages than does previous
work.

• We describe a module mechanism that allows privileged access to be textually restricted, enables parts
of a program to be typechecked independently, and eases integration of independently-developed code.

The next section of this paper reviews related work. Section 3 describes the language model and type system
that our algorithm supports and shows how the Cecil language fits into this model. Section 4 then specifies
the typechecking problem, details our algorithm, argues for its correctness, and analyzes its complexity.
Section 5 introduces our module mechanism and discusses its impact on the typechecking algorithm.
Section 6 offers our conclusions.

2 Related Work

2.1 Type Checking

Agrawal, DeMichiel, and Lindsay present a polynomial-time algorithm for typechecking Polyglot, a CLOS-
like database type system [Agrawalet al. 91]. Their algorithm divides the typechecking problem into two
components: checking that the collection of multi-methods comprising a generic function isconsistent, and
checking that calls of generic functions are type-correct. Our algorithm makes a similar division between
client-side checking and implementation-side checking, mediated by a set of legal signatures. However,
their algorithm depends on a number of restrictive assumptions about the language they typecheck:

• The multi-methods within a generic function must betotally ordered in terms of specificity. Graph-
based method lookup semantics found in most object-oriented languages with multiple inheritance
[Snyder 86], where the method overriding relationship only forms a partial order, cannot be handled.
Our algorithm supports such partially ordered method hierarchies while still detecting whether any
ambiguously-defined messages are sent.

• All classes in Polyglot are assumed to beconcrete and fully implemented; all of the multi-methods in a
generic function are complete implementations. This assumption is needed because their algorithm
declares a call site legal exactly when there is a method implementation that applies to the static types
of the formals. Our algorithm is more flexible because it allows a call to be declared legal as long as all

4

Typechecking and Modules for Multi-Methods Chambers & Leavens

concrete implementations of the arguments’ static types provide an implementation for the method. This
allows the use of abstract classes defining interfaces whose implementation is deferred to concrete
subclasses, as with the abstractmatrix class and thefetch function earlier.

• Inheritance and subtyping are synonymous in Polyglot. While many common object-oriented languages
link code inheritance with subtyping, many researchers have noted that conceptually the two relations
are different (e.g., [Snyder 86, Cooket al. 90, Leavens & Weihl 90]). Subclassing refers to an
implementation strategy, where a subclass inherits some of its implementation from its superclasses.
Subtyping, on the other hand, refers to a relationship between the interfaces of two types. If a class
conforms to a type, then all of its (direct) instances support the interface specified by the type. Moreover,
if one type is asubtype of another, then all classes that conform to the subtype also conform to the
supertype. This definition allows instances of the subtype (i.e., direct instances of classes that conform
to the subtype) to be substituted wherever instances of the supertype are expected, since the instances
of the subtype also support the interface of the supertype. Subclassing and subtyping need not be tied
together: a class can inherit code from some other class without being required to be a subtype, and the
type of a class can be a subtype of the type of some other class without forcing the subclass to also
inherit code from the other class. Keeping inheritance and subtyping separate allows for more flexible
and extensible organizations of code, and some more recent languages including Cecil, POOL [America
87, America & van der Linden 90], and Strongtalk [Bracha & Griswold 93] do in fact separate the two
relations. Our algorithm allows the type partial order to be specified independently of the code
inheritance graph, and the set of legal messages (described bysignatures) can be defined independently
of the set of multi-method implementations.

• In Polyglot, all arguments are dispatched. Methods are ordered using the declared types of all their
formals in Polyglot. Our algorithm allows any subset of a method’s formals to be specialized, with the
unspecialized formals receiving normal type declarations that must be guaranteed statically. As a result,
our algorithm includes the standard contravariant method typechecking rules of singly-dispatched
languages as a special case.

Kea is a higher-order polymorphic functional language supporting multi-methods [Mugridgeet al. 91]. Like
Polyglot, code inheritance and subtyping in Kea are unified. Kea’s type checking includes the notion that a
collection of multi-methods must beexhaustive andunambiguous, and these notions appear in our type
system as well. The semantics of typechecking in Kea is specified formally, but an efficient typechecking
algorithm is not presented. As with Polyglot, our contribution in the area of typechecking relative to Kea is
that we typecheck several important language features not found in Kea, including mutable state, separate
subtyping and inheritance graphs, abstract classes, and mixed specialized and unspecialized arguments.
Moreover, we present a typechecking algorithm, argue for its correctness, and analyze its complexity.

Other researchers have developed more theoretical accounts of multi-method-based languages [Rouaix 90,
Leavens & Weihl 90, Ghelli 91, Castagnaet al. 92, Pierce & Turner 92, Bruceet al. 95]. These papers are
more concerned with specifying the semantics of multi-methods and with defining type systems than with
algorithms for typechecking. As a result, they ignore many of the language features specifically addressed
by our work. Most other work on type systems for object-oriented programming (e.g., [Cardelli & Wegner
85, Cardelli & Mitchell 89, Bruceet al. 93, Palsberg & Schwartzbach 94]) only deals with singly-dispatched
languages.

2.2 Module Systems

The only module system for a multi-method-based language of which we are aware is the Common Lisp
package system [Steele 90]. This system provides name space management, allowing symbols to be
clustered into packages and allowing some symbols to be private to a package. In Common Lisp,
encapsulation is only advisory, and users may always circumvent the encapsulation of a symbols in a
packagep by writingp::s . Common Lisp does not include static type checking. In contrast, encapsulation

5

Typechecking and Modules for Multi-Methods Chambers & Leavens

can be enforced in our module system and our module system cooperates with our static typechecking
algorithm.

A few other object-oriented languages include some form of separate module system, including Modular
Smalltalk [Wirfs-Brock & Wilkerson 88], Modula-3 [Nelson 91], and Oberon-2 [Mössenböck & Wirth 91].
In Modular Smalltalk, modules provide name space management for class names, and a separate mechanism
provides access control for the methods of a class. Our module design is closer to the Common Lisp,
Modula-3, and Oberon-2 approach, with a single construct, the module, providing all name space
management and access control.

Many object-oriented languages enable access to the operations on classes to be controlled. C++ classes, for
example, have three levels of access control: one level for clients (public), one for subclasses
(protected), and one restricted to the class and its explicitly named friends (private). Because of
C++’s friend mechanism, one can write software that has privileged access to more than one type of data
while still textually limiting private access. Our module design also supports these degrees of visibility.
Trellis supports these notions except for friends [Schaffertet al. 86], and Eiffel supports public and protected
levels of visibility [Meyer 88, Meyer 92].

Canning, Cook, Hill, and Olthoff define a notion of interfaces for languages like Smalltalk [Canning et al.
89]. Their notation distinguishes types from classes, as do we, and they are concerned with type checking
against such interfaces. They also have an interesting notion of interface inheritance. However, they do not
consider multi-methods or encapsulation issues.

More sophisticated module systems than ours are found in the functional language Standard ML [Milneret
al. 90, Paulson 91] and in the equational specification language OBJ2 [Goguen 84]. SML’s modules are first-
class and can be parameterized. OBJ2’s theories are like SML’s signatures (the interfaces to SML modules),
but allow for behavioral specifications as well as type information. Both SML and OBJ2 have ways of
importing modules that allow for sophisticated kinds of renaming. We omit such sophisticated features to
keep our proposal simple and to focus on support for multi-methods.

3 Programming Model and Type System
Our typechecking algorithm is designed for object-oriented languages that have a class inheritance graph, a
potentially separate subtyping graph, a set of multi-method implementations specialized to classes, and a set
of message signatures that define the message interface supported by types. The following subsections
elaborate on these assumptions and show how the Cecil language’s constructs meet these assumptions.

3.1 Classes and Inheritance

We assume that the program declares a finite set of classes,C. We assume that a subset of these classes,
Cconcrete⊆ C, indicates which classes are concrete and instantiable. Classes inC but notCconcrete are
abstract and cannot be directly instantiated at run-time. Abstract classes can model pure virtual classes in
C++ and deferred classes in Eiffel.

We assume also that the program defines a fixed binary relationdirect-inherits on C modeling direct
inheritance of implementation between classes. We then define the binary relation≤inh onC as the reflexive,
transitive closure ofdirect-inherits. We require that≤inh impose a partial order onC, i.e., there cannot be
cycles in the declared inheritance graph. Finally, we assume that there exists a classany ∈ C that is the
single greatest element of≤inh; this class is used as the specializer of formals with no explicit specializer.
For languages such as C++ where no explicit root class of the inheritance hierarchy is required, an implicit
root class can be created that is the superclass of all other (explicit) classes.

In Cecil, the class inheritance graph is derived fromrepresentation declarations andinherits
clauses. For example, the Cecil declarations

6

Typechecking and Modules for Multi-Methods Chambers & Leavens

abstract representation matrix_rep;
template representation dense_matrix_rep inherits matrix_rep;

are modeled with two classes namedmatrix_rep and dense_matrix_rep , with
dense_matrix_rep inheriting frommatrix_rep . The classmatrix_rep is an abstract class, while
dense_matrix_rep is a concrete class, since in Cecil a template representation acts like a pattern for
run-time-created objects while an abstract representation cannot be instantiated at run-time. Cecil includes
a predefined classany which is implicitly the ancestor of all other classes (corresponding to any in our
formal model) and which is used as the specializer of otherwise unspecialized formals of multi-methods.
Additionally, Cecil includes closure objects, first-class lexically-nested anonymous function objects that
execute their bodies when sent theeval message. Each textual occurrence of a closure constructor
expression is modeled as a distinct class.

3.2 Types and Subtyping

We assume that the program declares a finite set of types,T, and an associated reflexive, transitive binary
relation≤sub onT that models subtyping:t1 ≤subt2 iff t1 is equal tot2 or t1 is a subtype oft2. In our model,
types and subtyping can be completely independent from classes and code inheritance, and the≤sub ordering
on types is independent of the≤inh ordering on classes. To make some of our typechecking rules simpler to
express, we assume that <T, ≤sub> forms a lattice, i.e., for every pair of typest1 andt2 ∈ T there exists a
unique greatest lower bound (most specific supertype)glb(t1, t2) ∈ T, and a unique least upper bound (most
general subtype)lub(t1, t2) ∈ T. Most object-oriented languages only require their subtyping graph to be a
partial order, not a lattice, but it is simple to create implicit g.l.b. and l.u.b. types to transform any partial
order into a lattice. Alternatively, the typechecking rules given below could be changed to compute sets of
top lower bound types and bottom upper bound types, instead of such fictional g.l.b. and l.u.b. types.

In Cecil, types and subtyping are derived fromtype declarations andsubtypes clauses. For example,
the Cecil declarations

type matrix_type;
type dense_matrix_type subtypes matrix_type;

are modeled with two types namedmatrix_type and dense_matrix_type with
dense_matrix_type subtyping frommatrix_type . The≤sub subtype relation includes the reflexive,
transitive closure of these explicitly-declared direct subtype relationships. Cecil also includes the following
types and type constructors:

• void , the return type of functions that return no useful result to their callers, which is implicitly the
supertype of all other types (the top of the type lattice):∀ t ∈ T. t ≤subvoid ;

• any , which is implicitly the supertype of all non-void types:∀ t ∈ T, t ≠ void . t ≤subany ;

• none , the type of functions that do not return to their callers, which is implicitly a subtype of all other
types (the bottom of the type lattice):∀ t ∈ T. none ≤subt;

• t1 | t2, the least upper bound of two types;

• t1 & t2, the greatest lower bound of two types; and

• λ():tresult, the types of closures,* which use standard contravariant rules for subtyping:

λ():tresult ≤subλ(’):tresult’ ⇔ (∀i. ti’ ≤subti) ∧ tresult ≤subtresult’ .

3.3 Conformance of Classes to Types

The class and type graphs are related through the notion of classes conforming to types. Informally, when a
classc conforms to a typet, the class c implements the behavior specified by the typet; thus direct instances

* The notation stands for a vector of types, as explained in subsection 3.4.

t

t

t t

7

Typechecking and Modules for Multi-Methods Chambers & Leavens

of classcmay be stored in variables of typet. To model this relationship, we assume that the program defines
a functiondirect-conforms: C → T, which for each class gives the most specific type to which the class
directly conforms. We then derive the full conformance relation between classes and types,(<:): C → T,
from direct-conforms and the subtyping relation≤sub as follows:

c <: t ≡ direct-conforms(c) ≤subt.

Informally, whenever a class conforms to a type, it also conforms to all supertypes of the type.

Because subtyping and inheritance do not necessarily coincide, one class can inherit from another without
being substitutable in place of the other. More formally, ifc ≤inh c’ andc’ <: t, onecannot conclude that
c <: t.

In Cecil, direct conformance is derived fromconforms clauses that are part ofrepresentation
declarations:

template representation dense_matrix_rep
inherits matrix_rep
conforms dense_matrix_type;

This declaration indicates that the classdense_matrix_rep conforms directly to the type
dense_matrix_type . Thedense_matrix_rep class will conform indirectly to all supertypes of
dense_matrix_type .

3.4 Vectors of Classes and Types

To model argument lists, we form vectors of classes and types. It simplifies the discussion of the
typechecking algorithm to assume an inheritance, subtyping, or conformance relation between vectors,
derived by extending the appropriate relation on individual classes or types pointwise; i.e., for a relation≤R:

≤R ≡ | |= | | ∧ (∀ i ∈ indexes() . pi ≤R qi).

Informally, a vector of classes is considered to override (inherit from) another equal-length vector of classes
whenever each of the element classes of one vector overrides the corresponding element of the other vector;
subtyping between two type vectors and conformance between a class vector and a type vector are defined
similarly.

3.5 Method Implementations

We assume a program defines a finite set of message names,MessageKey, and a finite set of method
implementations,M. Each method implementation has a name, a vector of argument specializer classes, a
vector of argument types, a result type, and a body. We will use the following functions to access the
components of a method implementation:

• A function msg: M → MessageKey, such that msg(m) = µ is the message handled bym.

• A function specializers: M → C*, such that specializers(m) = is a vector of classes that are the
argument specializers for methodm.

• A function argtypes: M → T*, such that argtypes(m) = is a vector of types declared for the formals
of methodm.

• A function restype: M → T, such that restype(m) = t is result type of methodm.

In Cecil, method implementations are derived fromimplementation declarations like the following:
implementation fetch(m @matrix_rep : matrix_type,

row @any : int, col @any : int):num { ... }

The name of this method isfetch/3 (in Cecil, a method only applies to messages with the right number
of arguments), its argument specializers are modeled with the class vector <matrix_rep , any , any >, its
argument types are modeled with the type vector <matrix_type , int , int >, and its result type isnum.

p q p q q

c

t

8

Typechecking and Modules for Multi-Methods Chambers & Leavens

This method specializes only on its first argument, thereby stating that it is applicable to instances of classes
that inherit from the classmatrix_rep , but static type checking is required to ensure that therow and
col formals are passed actual arguments that support the interface specified by the typeint . (Static type
checking is also needed to ensure that for each classc that inherits frommatrix_rep , eitherc conforms
to matrix_type or there is an overridingfetch method specialized on classc .)

We derive a partial ordering on methods,≤meth, modelling the method overriding relationship, from the
methods’ argument specializer classes (the type vector does not affect method overriding) as follows:

m1 ≤methm2 ≡ specializers(m1) ≤inh specializers(m2).

This ordering reflects the message lookup semantics in Cecil: one method overrides another exactly when
its argument specializers are at least as specific as the other’s and moreover at least one of the overriding
method’s specializers is strictly more specific than the other’s. We say that a vector of classesinherits a
methodm when ≤inh specializers(m).

Because vectors of classes are ordered pointwise, with no priority assigned to the position of the vector
element, the specializers of a method are equally important in determining the method’s overriding
relationships [Touretzky 86]. This matches Cecil’s semantics, but may not match other languages’. For
example, CLOS prioritizes argument positions with earlier argument orderings completely dominating later
argument orderings. It seems possible to extend our model to encompass other method overriding
relationships, for example by ordering vectors of classes lexicographically rather than pointwise.

3.6 Signatures

The final component of a program is a set ofsignatures, S, where each signature has a name, a vector of
argument types, and a result type. A signature declares that any message with a matching name and
arguments that conform to the signature’s argument types is considered legal to send, and consequently the
signature places constraints on the set of method implementations that purport to support the signature. In
our model, just as types and classes are distinct, signatures and method implementations are distinct.
However, we will overload the function names for accessing a method implementation’s components to
access the analogous components of a signature:

• A function msg: S→ MessageKey, such that msg(s) = µ is the message handled bys.

• A function argtypes: S→ T*, such that argtypes(s) = is a vector of types declared for the arguments
of signatures.

• A function restype: S→ T, such that restype(s) = t is result type of signatures.

In Cecil, signatures are derived fromsignature declarations like the following:
signature fetch(matrix_type, int, int):num;

This signature specifies that it is legal to send thefetch message to three arguments that conform to the
matrix_type , int , andint types, respectively. Additionally, such a message can be assumed to return
an object that conforms to the typenum.

Many signatures can be defined with the same name. Each can provide a different relationship between
argument types and result types. For example, in the following declarations:

type num;
type int subtypes num;
type fraction subtypes num;
signature +(num,num):num;
signature +(int,int):int;
signature +(fraction,fraction):fraction;

c
c

t

9

Typechecking and Modules for Multi-Methods Chambers & Leavens

several+ signatures are defined. If a client knows only that it is adding two numbers, then it can assume
only that the result is a number. However, if a client knows it is adding a pair of integers, then it will be able
to infer that the result of the message is not just a number but also an integer. This ability to overload and
extend signatures is an important part of our type system.

3.7 Syntactic Sugar

While Cecil supports independent specification of the class graph, the type graph, and the conforms relation,
in practice these relations often take on very stylized forms. To make programming easier, Cecil includes
theobject declaration, which is syntactic sugar for arepresentation and atype declaration with
aconforms clause linking the two, and theisa clause, which is syntactic sugar for aninherits clause
and asubtypes clause. To illustrate, the following declarations more concisely define the same object,
type, and conformance structures as the earlierimplementation andtype declarations:

abstract object matrix;
template object dense_matrix isa matrix;

Here matrix names both a representation and a type. Since in Cecil types and representations are in
distinct name spaces, and it is clear by context which name space is used in a construct, no ambiguity can
result.

As with representations and types, Cecil supports themethod declaration which is syntactic sugar that
allows implementations and signatures to be declared simultaneously when convenient. The following
method declaration generates an implementation declaration and a signature similar to the ones illustrated
above:

method fetch(m @:matrix, row:int, col:int):num { ... }

This declaration illustrates two final pieces of syntactic sugar in Cecil. If a formal’s specializer is@any, this
may be omitted, as in therow andcol formals above. If a formal’s specializer and its declared type have
the same name, then the@: sugar is more concise, as with them formal above.

With these sugars, Cecil programs are just as concise as other languages for the cases where code inheritance
and subtyping coincide. However, the additional flexibility of independent inheritance and subtyping
relations is always available when needed.

4 Typechecking Algorithm
The subtyping graph and the set of signatures together define an interface. We use this interface to divide
the typechecking process for a program into two parts:client-side checking of expressions against the type/
signature interface andimplementation-sidechecking that class and method definitions properly implement
the interface guaranteed to clients by the type and signature specifications. The next subsection briefly
discusses client-side checking. The remaining subsections discuss the more difficult problem of
implementation-side checking. Subsection 4.2 specifies the implementation-side typechecking problem.
Subsection 4.3 presents an overview of our algorithm, with subsections 4.4 through 4.7 filling in the details.
Subsection 4.8 discusses the impact on the algorithm of some of the more sophisticated language features
supported by our model.

4.1 Client-Side Typechecking

Client-side checks are fairly typical, including checks such as that an expression of one type is only assigned
to variables declared to be of a supertype and that a method only returns the results of expressions that are
subtypes of the declared return type of the method. The most interesting of the client-side checks is for
message sends, since sends are the only kind of expression whose checking depends on signatures. In our
model, a message typechecks if there is a signature with the same name as the message whose argument
types are supertypes of the static types of the send’s argument expressions. To compute the type of the result

10

Typechecking and Modules for Multi-Methods Chambers & Leavens

of the message, all signatures that match the send in this way are collected, and then the most specific result
type of any of the matching signatures is used as the result of the send. More precisely, a messageµ sent to
argument expressions of static type typechecks iff the set of signatures

Smatch = { s msg(s) = µ ∧ ≤sub argtypes(s) }

is non-empty. The static type of the result of such a message is

glb({ restype(s) s ∈ Smatch})

For example, given the types and signatures
type num;
type int subtypes num;
type fraction subtypes num;
signature +(num,num):num;
signature +(int,int):int;
signature +(fraction,fraction):fraction;

and the send expression
3 + 4

whose argument types are<int , int> , the set of matching signatures is {+(num,num):num ,
+(int,int):int }. Because this set is non-empty, the expression is type-correct. The type of the result
of this message isint , the most specific result type of the matching signatures.

To compute the type of the result of a message send expression from the set of matching signatures, the
greatest lower bound of the signatures’ result types is used. This selects the single most specific result type,
if one exists, and otherwise computes the greatest lower bound of the most specific result types. One might
have expected that the least upper bound would be used, as would happen if several applicable method
implementations were being collected together. However, unlike method implementations, signatures are
not selected at run-time. Rather, they are static guarantees about input-output typing properties of messages:
if the client knows that the arguments to a+ message are subtypes ofnum, then the client can assume that
the result will be a subtype ofnum. A signature does not override another signature, but instead augments
it with additional static type information. The following contrived example illustrates these properties:

signature *(num,num):int;
signature *(int,int):num;

These signatures promise clients that multiplying any two numbers returns an integer, andadditionally that
multiplying two integers can be assumed to return a number; the second signature provides no new
information to clients about multiplying integers that isn’t already known about multiplying numbers.
Implementations of* will be required to satisfy all matching signatures. In particular, the implementation
of * for integers will be required to return a subtype of bothint andnum, i.e., int . Because of this
constraint on implementations, clients can safely assume that the result of a message will be a subtype of
the declared result types of all matching signatures. One might expect more specific signatures to narrow
result types in a covariant fashion [Reynolds 80], but by using the g.l.b. operation our model does not need
to impose any such restrictions.

Other client-side checks are straightforward and language-dependent, and we do not discuss them further
here. Of course, to prove type safety for a complete program, one would need to specify the kinds of
expressions allowed in the language; describe sufficient conditions for expressions to be type-correct,
assuming correctness of implementations; describe a typechecking algorithm for client-side expressions and
prove that it implies the type-correctness conditions; and finally prove that the type-correctness of the client-
side together with type-correctness of the implementation side implies a global type safety condition. Since
our model of expressions and statements is fairly standard, we do not go through these steps, and instead
focus on the new work of implementation-side typechecking.

t

t

11

Typechecking and Modules for Multi-Methods Chambers & Leavens

4.2 Specification of Implementation-Side Typechecking

A set of classes and methods in a program is considered to correctly implement the interface guaranteed to
clients by a set of types and signatures if every possible message that could be sent to concrete arguments
that conform to the argument types of some signature would result in a legal message send with no message
lookup errors. More precisely, the implementation-side checks are satisfied if for each signature, for each
vector of concrete argument classes that conforms to the argument types of the signature, a single most
specific method is inherited by that argument vector. (Because the inheritance ordering is acyclic, the unique
most specific method is one that is least in the set of applicable methods.) Moreover, the vector of concrete
argument classes must conform to the declared argument types of the method, and the method’s result type
must be a subtype of the signature’s result type.

ImplementationTypechecks ≡
∀ s ∈ S. ∀ ∈ (Cconcrete)*.

<: argtypes(s) ⇒
∃ m ∈ M.

m= least(applicable-methods(s,)) ∧
<: argtypes(m) ∧

restype(m) ≤sub restype(s)

where*

applicable-methods(s,) ≡
{ m ∈ M msg(m) = msg(s) ∧ | | = |argtypes(m)| ∧ ≤inh specializers(m) }

m= least(Ms) ≡
m ∈ Ms ∧
∀ m’ ∈ Ms. m ≤methm’

Note that theImplementationTypechecks rule is looser than the standard contravariant method
implementation overriding rule. An applicable methodm can have argument types that are not supertypes
of those in the corresponding signatures, as long as there are no concrete classes that conform to the
signature’s argument types,argtypes(s), that do not also conform to the method’s argument types,
argtypes(m).

Directly executing this specification would lead to an algorithm with execution time on the order ofO(S ⋅
Cconcretek ⋅ M), wherek is the maximum number of arguments of any message in the program. We
assume thatk is bounded by a constant, and so does not grow with the size of a program. SinceS, Cconcrete,
andM are likely to be large, such an algorithm would be unacceptably slow in a practical system. One of
our main contributions is an algorithm that is much faster for what we believe are the commonly occuring
cases for implementation-side typechecking. No such algorithm has been previously proposed for the class
of languages that is described in section 3.

4.3 Overview of the Algorithm

We divide the implementation-side typechecking algorithm into checking for three separate properties of
class/method implementations with respect to the type/signature interface: conformance, completeness, and
consistency. We describe and specify each of these subproblems in turn below.

Conformance means that for each signature, the argument and result types of every methodcovered by the
signature must be compatible with those specified by the signature. A method is covered by a signature if it
could be invoked by a send that is type-correct according to the signature, i.e., if there exists some vector of
concrete classes that conforms to the argument types of the signature, inherits from the method’s argument

* In all our specifications, we assume that the sets and relations defined in section 3 are globally available.

c
c

c
c

c
c c

c

12

Typechecking and Modules for Multi-Methods Chambers & Leavens

specializers, and is not overridden by some other method. An entire implementation is conforming if for
each signature, each of the methods in the signature’s covered set conforms to the signature. Conformance
ensures that the types of a method’s formals are respected and that the type of the result of a message is
respected, thus fulfilling the implementation side’s part of the bargain with client expressions. This
specification of conformance is formalized in the predicateImplementationIsConforming.

ImplementationIsConforming ≡
∀ s ∈ S. ∀ ∈ (Cconcrete)* .

<: argtypes(s) ⇒
∀ m ∈ applicable-methods(s,).

(¬ ∃ m’ ∈ applicable-methods(s,). m’ ≠ m ∧ m’ ≤methm) ⇒
<: argtypes(m) ∧ restype(m) ≤sub restype(s)

Informally,completeness means that each signature is fully implemented by a set of methods, i.e., for every
concrete argument vector conforming to the signature’s argument types, there must exist at least one method
that implements the message. If the methods are incomplete, then a “message not understood” error might
arise at run-time. Completeness is formalized as follows:

ImplementationIsComplete ≡
∀ s ∈ S. ∀ ∈ (Cconcrete)*.

<: argtypes(s) ⇒
|applicable-methods(s,)| > 0

Conversely,consistency means that there are no ambiguities among the methods implementing a signature,
i.e., for every concrete argument vector conforming to the signature’s argument types, there must exist no
more than one most-specific method that implements the message. If the methods are inconsistent, then a
“message ambiguously defined” error could occur at run-time. In precise notation:

ImplementationIsConsistent ≡
∀ s ∈ S. ∀ ∈ (Cconcrete)*.

<: argtypes(s) ⇒
∀ m1, m2 ∈ applicable-methods(s,).

∃ m ∈ applicable-methods(s,).
m ≤methm1 ∧ m ≤methm2

Completeness and consistency can be explained visually using the following “mountain top” diagram.

c
c

c
c

c

c
c

c

c
c

c
c

MGCs(argtypes(s))

specializers(m1) specializers(m3)

region of potential inconsistency

region of potential incompleteness

specializers(m2)

specializers(m4)

superclass
vectors

subclass
vectors

13

Typechecking and Modules for Multi-Methods Chambers & Leavens

The diagram divides up regions of the space of vectors of classes, with one vector plotted below another if
the first overrides the second (i.e., each of the elements of the first vector inherits from the corresponding
element of the second). We have drawn cones below certain points in this space, enclosing the set of vectors
that inherit from (override) the root of the cone; in the presence of multiple inheritance, a vector of classes
may inherit from several mutually-unrelated vectors, leading to overlapping cones as in the diagram. The
vector labeledMGCs(argtypes(s)) corresponds to the most general vector of classes that conforms to the
argument types of the signature being checked.* The cone below this vector represents all class vectors that
conform to the signature’s argument types; the vectors in this cone are of interest because they are exactly
the vectors that can be arguments of a message matching the signature. As an example, we have plotted four
other class vectors representing the specializers of the methods that are covered by the signature. The cone
below each specializer vector represents the class argument vectors that inherit that method.

Given this mountain-top diagram, the set of methods is complete with respect to the signature if there are
no vectors of concrete classes in the region labeled as potentially incomplete. If such a vector existed, then
it would be considered legal from the perspective of the signature but have no method implementation that
it inherited. Similarly, a set of methods is consistent if there are no vectors of concrete classes in the region
labeled as potentially inconsistent. If such a vector existed, then more than one method would be inherited
by the vector but no single method would be most specific. The other regions under the signature’sargtypes
cone are completely and consistently implemented. The goal of the typechecking algorithm is to check for
each signature whether there exist any vectors of concrete classes in either the incomplete or the inconsistent
regions of the signature.

The following declarations exemplify the need for each of these three kinds of checks:
-- interface:
type num;
type int subtypes num;
type fraction subtypes num;
signature +(num,num):num;
signature +(int,int):int;
signature +(fraction,fraction):fraction;
-- implementation:
abstract representation num_rep conforms num;
template representation int_rep conforms int inherits num_rep;
template representation fraction_rep conforms fraction inherits num_rep;
template representation float_rep conforms fraction inherits num_rep;
implementation +(x @int_rep:int, y @int_rep:int):int {...}
implementation +(x @float_rep:fraction, y @float_rep:fraction):num {...}
implementation +(x @num_rep:num, y @fraction_rep:fraction):num {...}
implementation +(x @fraction_rep:fraction, y @num_rep:num):num {...}

This implementation fails all three criteria for type-correctness with respect to the interface. The+ method
given for two float_rep objects does not conform to the signature
+(fraction,fraction):fraction , since its result typenum is not a subtype offraction . The
implementations are incomplete, since addition for anint_rep object and afloat_rep object, in either
order, is not implemented. Finally, the implementations are inconsistent, since when adding two
fraction_rep objects, two+ methods apply but neither overrides the other. If these problems were
corrected, then the implementations would become type-correct. In particular, becausenum_rep is
abstract, no incompleteness results from not implementing addition of twonum_rep objects.

* For simplicity in the two-dimensional diagram, we are assuming that there is one such most general vector of classes
that corresponds to the argument types of the signature. In general this may not be true, but our algorithm does not
depend on this assumption.

14

Typechecking and Modules for Multi-Methods Chambers & Leavens

For the most part, conformance can be checked for each method declaration separately, similarly to the kinds
of method interface checks that occur in other statically-typed object-oriented languages, although
separating subtyping from inheritance introduces a subtlety that requires special care. Completeness and
consistency must be checked globally, considering the combination of methods that together implement
some signature. The requirement for a more global view for typechecking completeness and consistency
stems from the presence of multi-methods, abstract classes, and the separation of code inheritance and
subtyping.

There is no need to check explicitly that a type really is a subtype of all its declared supertypes. Our
algorithm uses the declared conformance and subtyping relationships to determine which methods must be
implemented for which classes. If these checks pass, then the declared conformance and subtyping
relationships are structurally correct. (Of course, since the type system has no knowledge of specifications,
it cannot guarantee the correctness of behavioral subtyping claims [America 87, America & van der Linden
90, Leavens 91, Leavens & Weihl 90].)

The following theorem states that the checks that constitute the parts of our algorithm are sufficient to ensure
that the implementation typechecks. (As discussed in section 4.1, this is not sufficient to guarantee program
type correctness, since the client-side checks also must be satisfied.)

Theorem 1. (ImplementationIsConforming ∧ ImplementationIsComplete ∧
ImplementationIsConsistent) ⇒ ImplementationTypechecks

Proof sketch. Suppose, for the sake of contradiction, thatImplementationTypechecks is false but
ImplementationIsConforming, ImplementationIsComplete, andImplementationIsConsistent are all
true. By definition ofImplementationTypechecks, there must be some signature,s, and some vector of
concrete classes, , that conforms to the argument types ofs, such that there is no method that satisfies the
properties listed in the definition ofImplementationTypechecks. This can happen if the set of all
applicable methods is empty, but this contradicts the assumption thatImplementationIsComplete is true.
This also can happen if there is no single greatest lower bound in the set of applicable methods, but this
contradicts the assumption that ImplementationIsConsistent is true. Finally,
ImplementationTypechecks could fail if the greatest lower bound,m, in the set of applicable methods, has
argument or result type declarations that are not compatible with the signatures, but this contradicts the
assumption thatImplementationIsConforming is true. Hence the original assumption must be false and
the theorem must hold.

(A formal, symbolic proof for this and all other theorems is contained in Appendix A.)

The next three subsections present algorithms that implement each part of the problem breakdown
efficiently.

4.4 Checking Conformance

To check conformance, our algorithm considers each method in the program in turn. For each method, and
for each signature such that the method could be invoked as a result of a call declared type-correct by the
signature, we first verify the following two conditions:

• the type of each of the method’s unspecialized formals must be a supertype of the corresponding type
of the signature, and

• the result type of the method must be a subtype of the signature’s result type.

This pair of checks is the standard contravariant rule for subtyping of functions [Cardelli 88, Cardelli &
Wegner 85], restricted to unspecialized formals.

The final conformance check tests constrained formals. For each specialized formal, we need to ensure that
every class of actual argument that might be passed to the method conforms to the declared type of the

c

15

Typechecking and Modules for Multi-Methods Chambers & Leavens

formal; because the formal is specialized, only classes that inherit from the specializing class need to be
considered. As a first approximation, the typechecker could check that the formal’s specializer class
conforms to the formal’s declared type. However, this check is insufficient: since subtyping and inheritance
are independent, some class could inherit from the specializer class without conforming to the same set of
types as the specializer class, in particular, without conforming to the declared type of the specialized
formal. Consider the following example:*

type bag;
signature add(bag, int):void; -- allow duplicates
template representation bag_rep conforms bag;
method add(b @bag_rep : bag, x @any : int):void { ... } -- could create duplicates
type set; -- not a subtype ofbag ; add has incompatible specification
signature add(set, int):void; -- disallow diplicates
template representation set_rep inherits bag_rep conforms set;
... add(new set_rep, 3) ... -- violates conformance!

In the example above,set_rep inherits theadd method, butset_rep objects do not conform to thebag
type expected by theadd method, and hence this implementation of thebag andset types is incorrect. If
the error were not detected, then the no-duplicates property of sets could be broken, or run-time type errors
could result if theadd method sends messages to itsb argument that are not understood byset_rep
objects.

In our model, there are two ways to correct the type error. One way would be to use a more general type for
the specialized formal of theadd method for bag_rep objects, one that expressed the minimal
requirements needed by theadd method’s body and to which bothbag_rep andset_rep conformed:

type unordered_collection;
type bag subtypes unordered_collection;
signature add(bag, int):void; -- allow duplicates
template representation bag_rep conforms bag;
method add(b @bag_rep : unordered_collection, x @any : int):void { ... }
type set subtypes unordered_collection;
signature add(set, int):void;
template representation set_rep inherits bag_rep conforms set;
... add(new set_rep, 3) ... -- type-correct

This new implementation allows any class to inherit frombag_rep as long as the subclass conformed to
unordered_collection . This does require some care when writing methods, however: the
programmer should use types for specialized formals that are as general as possible, so as to enable future
inheritance of code for subclasses that are not also subtypes.

Alternatively, our model allows the programmer to override the offending method for those subclasses that
do not conform to the method’s argument type declarations:

type bag;
signature add(bag, int):void; -- allow duplicates
template representation bag_rep conforms bag;
method add(b @bag_rep : bag, x @any : int):void { ... } -- could create duplicates
type set; -- not a subtype ofbag ; add has incompatible specification
signature add(set, int):void; -- disallow diplicates
template representation set_rep inherits bag_rep conforms set;
method add(s @set_rep : set, x @any : int):void { ... } -- no duplicates
... add(new set_rep, 3) ... -- type-correct

In this version, thebag_rep version ofadd is not obligated to work forset_rep objects, since it is
overridden by a different method forset_rep objects. In general, overriding in this way can always be

* new is assumed to be a primitive function to instantiate a class.

16

Typechecking and Modules for Multi-Methods Chambers & Leavens

used to overcome a problem with conformance. One would like theset_rep version ofadd to be
implemented in terms of thebag_rep version ofadd , after checking that the element is not already present
(Cecil has aresend construct to invoke an overridden method, analogous to Smalltalk’ssuper
construct). Unfortunately, such a resend is not type-correct: its argument, of typeset , cannot be passed to
bag_rep ’s add method, which expects the incomparable typebag . So overriding is only useful for
method implementations that are completely independent of the overridden methods.

Our conformance checking algorithm is as follows:

ComputeIsConforming ≡
ComputeUnspecializedAndResultConform ∧ ComputeSpecializedAreConforming

ComputeUnspecializedAndResultConform ≡
∀ m ∈ M. ∀ s ∈ relevant-sigs(m, S).

has-common-classes(m, argtypes(s)) ⇒ contra-unspec-args-co-result(m, s)

ComputeSpecializedAreConforming ≡
∀ m ∈ M.

(∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ specializers(m)i <: argtypes(m)i) ∧

top-non-overridden-non-conforming-class-vecs(m) = ∅

where:

relevant-sigs(m, Ss) ≡ { s ∈ Ss msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)| }

has-common-classes(m,) ≡
let TCSs = { ci ∈ top-concrete-conforming-subclasses(specializers(m)i, i) ∧

i ∈ indexes(specializers(m)) } in
∃ ∈ TCSs .

(¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)| ∧
≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)

top-concrete-conforming-subclasses(c, t) ≡
top-classes(concrete-conforming-subclasses(c, t))

concrete-conforming-subclasses(c, t) ≡ { c’ ∈ Cconcrete c’ ≤inh c ∧ c’<: t }

top-classes(Cs) ≡ { c ∈ Cs ∀ c’ ∈ Cs. c’ ≠ c ⇒ ¬ (c ≤inh c’) }

contra-unspec-args-co-result(m, s) ≡
(∀ i ∈ indexes(specializers(m)).

specializers(m)i = any ⇒ argtypes(s)i ≤sub argtypes(m)i) ∧
restype(m) ≤sub restype(s)

top-non-overridden-non-conforming-class-vecs(m) ≡
{ ∈ top-non-conforming-class-vecs(specializers(m), argtypes(m)) |

¬ ∃ m’ ∈ M.
msg(m’) = msg(m) ∧ |argtypes(m’)| = |argtypes(m)| ∧ m’ ≤methm ∧ m’ ≠ m ∧

≤inh specializers(m’) }

t
c t

c

c

c

c

17

Typechecking and Modules for Multi-Methods Chambers & Leavens

top-non-conforming-class-vecs(,) ≡
{ ’ ∈ C* | | ’ | = | | ∧

∀ i ∈ indexes().
(ci = any ⇒ ci’ = ci) ∧
(ci ≠ any ⇒

let Cs = top-non-conforming-classes(ci, ti) in
(Cs = ∅ ⇒ ci’ = ci) ∧
(Cs≠ ∅ ⇒ ci’ ∈ Cs)) } − { }

top-non-conforming-classes(c, t) ≡
top-classes({ c’ ∈ Cconcrete| c’ ≤inh c ∧ ¬ (c’ <: t) })

To check unspecialized formals and results, the algorithm checks each method against each covering
signature. To check specialized formals, the algorithm searches for potential conformance errors of each
method. The algorithm locates the most general concrete classes that inherit from each of the method’s
specializers but do not conform to the declared argument type of the method (top-non-conforming-
classes), forms all combinations of these potentially illegal argument classes (top-non-conforming-
class-vecs), and then filters out any argument class vectors that invoke a more specific method (top-non-
overridden-non-conforming-class-vecs). If any vectors remain, then the method has a conformance
error. The specializers themselves are treated as a special case: they are checked explicitly for conformance
to the method’s argument types so thattop-non-conforming-class-vecs can be restricted to vectors that
have at least one proper (and therefore non-conforming) subclass of the corresponding specializer.

Theorem 2. ComputeIsConforming ⇒ ImplementationIsConforming

Proof sketch. To show that the algorithm correctly computes whether the set of methods conforms to the
set of signatures, assume for the sake of contradiction that there exists a vector of concrete classes that
conforms to the argument types of some signature but that invokes a method where either the vector of
concrete classes does not conform to the method’s argument types or the method returns a result that is not
a subtype of the signature’s result type. First, assume that the method result type is wrong. But this is
contradicted by the algorithm’sComputeUnspecializedAndResultConform test. Second, assume that
one of the concrete argument classes does not conform to the declared type of one of the method’s
unspecialized formals. But this is again contradicted by theComputeUnspecializedAndResultConform
test: since the concrete class conforms to the signature’s argument type, and the algorithm ensures that the
signature’s argument type is a subtype of the method’s argument type, the concrete class must therefore
conform to the method’s argument type. Finally, assume that one of the concrete argument classes does not
conform to the declared type of one of the method’s specialized arguments. Then the argument class must
either be a member oftop-non-conforming-classes, or there must exist a concrete superclass of the
argument class that also leads to a conformance error. Without loss of generality, we assume that the non-
conforming concrete argument class being considered does not have any non-conforming concrete
superclasses that also inherit from the method’s specializer class; this class is a member oftop-non-
conforming-classes. However, we assumed that this vector of top non-conforming concrete classes
invoked the method in question, not some more specific method, but the algorithm verified that there are no
such vectors of classes, by checking thattop-non-overridden-non-conforming-class-vecs was empty
and that the specializers themselves all conform to the declared argument types. Hence the assumption that
there exists a vector of concrete classes that illustrates that a method does not conform to a signature must
be wrong.

Complexity. (In our complexity analyses, we assume that basic operations over the subtyping and
inheritance partial orders, such as testing whether one element is less than another element or finding lower
bounds, can be performed in constant time. Various sources have described efficient data structures and

c t
c c c

c

c

18

Typechecking and Modules for Multi-Methods Chambers & Leavens

algorithms for testing subtyping in a lattice and for testing whether there exists a common descendant of two
members of a partial order [e.g. Caseau 93, Agrawalet al. 91].)

Prior to typechecking, we precompute for each class the partial order of its concrete subclasses. With this
set-up, the worst-case time complexity of computingtop-concrete-conforming-subclasses(c, t) is
O(Cconcrete). The worst-case complexity ofhas-common-classes(m,) is O(Cconcretek ⋅ M),
which would only occur when the class inheritance order is flat; we would expect this to be more like
O(Cconcrete ⋅ M) in practice. So checkingComputeUnspecializedAndResultConform requires time
O(Cconcretek ⋅ M2 ⋅ S) in the worst-case; but we expectO(Cconcrete ⋅ M2 ⋅ S). Computingtop-
non-conforming-classes takesO(Cconcrete), using a downwards topological traversal of the inheritance
graph to locate the top non-conforming classes in a single pass. In the worst case, there can beCconcrete
such classes, which occurs if the inheritance graph is flat and no classes conform to the method’s declared
argument type; we would expect that in practice inheritance without subtyping would be relatively rare, and
so the number oftop-non-conforming-classes would be a small fraction ofCconcrete. Computingtop-
non-conforming-class-vecs depends directly on the number oftop-non-conforming-classes, requiring
O(Cconcretek) time in the worst case, wherek is, again the maximum number of arguments to a method.
(Recall that we assumek is bounded by a constant.) By precomputing a partial ordering over methods based
on the method overriding relation, the time required fortop-non-overridden-non-conforming-class-
vecs is O(M ⋅ Cconcretek) in the worst case, but more likeO(M) in practice. Consequently, the time
to computeComputeSpecializedAreConforming is O(M2 ⋅ Cconcretek) in the worst case, leading to
an overall worst-case time forComputeIsConforming of O(M2 ⋅ Cconcretek ⋅ S). However, we
believe that in practice the algorithm would have a performance on the order of
O(M2 ⋅ Cconcrete ⋅ S).

If the pruning based on overridden methods is omitted, then conformance checking is much faster.
ComputeSpecializedAreConforming would require only constant time to determine whether a method
has a conformance error, by precomputing the most specific type to which each class and its subclasses
conform and then testing this type against the declared type of each specialized formal. This simpler version
of ComputeIsConforming would require onlyO(M ⋅ (S+|T|)) time overall [Chambers & Leavens 94].

4.5 Checking Completeness

To check the completeness of a set of method implementations with respect to a signature, we first compute
the set of concrete class vectors that are the tops of those cones that conform to the argument types of the
signature, i.e., the set of concrete class vectors that conform to the argument types of the signature and do
not inherit from any other such vectors. For each member of this set, we verify that there exists a method
inherited by this vector. The following diagram illustrates the check, showing with open circles the three top

t

19

Typechecking and Modules for Multi-Methods Chambers & Leavens

concrete class vectors that conform to the argument types of the signature. The two tops in the region of
potential incompleteness are flagged as errors.

Our algorithm iterates over all signatures, verifying completeness for each signature. As described in precise
notation below, to check the completeness of a set of method implementationsM with respect to a set of
class vectorsCs and a signatures, our algorithm first locates the set of concrete class vectorsTCSs that are
the tops of those that both inherit from a member ofCs and conform to the argument types ofs.* It then
verifies that each member ofTCSs inherits a method inM.

ComputeIsComplete ≡
∀ s ∈ S.

let any-vector = { } where = argtypes(s) and each ci = any in
IsComplete(relevant(M, s), any-vector, s)

where:

IsComplete(M, Cs, s) ≡
∀ ∈ Cs.

let TCSs = { ’ ci’ ∈ top-concrete-conforming-subclasses(ci, argtypes(s)i) ∧
i ∈ indexes() } in

∀ ’ ∈ TCSs. ∃ m ∈ M. ’ ≤inh specializers(m)

relevant(Ms,s) ≡ { m ∈ Ms msg(m) = msg(s) ∧ |argtypes(m)| = |argtypes(s)| }

Theorem 3. ComputeIsComplete ⇒ ImplementationIsComplete

Proof sketch. To show that this algorithm correctly detects incompleteness in a set of method
implementations with respect to a signature, assume for the sake of contradiction that the algorithm reports
that the methods are complete but that they really are incomplete. Then there must exist a vector of concrete
classes which conforms to the argument types of the signature but does not inherit a method (by definition
of incompleteness). This class vector must inherit from at least one of the top vectors computed above (by
definition of top). However, each of these top vectors has been verified to inherit at least one method (by
assumption that the check was successful), and this method must therefore be inherited by the concrete class
vector (by definition of inheritance). Hence the assumption that the system was incomplete must be wrong.

* IsComplete is more general than needed forComputeIsComplete because it will be reused as part of consistency
checking.

MGCs(argtypes(s))

specializers(m1)
specializers(m3)specializers(m2)

tops of cones of concrete class vectors

region of potential incompleteness

specializers(m4)

superclass
vectors

subclass
vectors

c c

c
c

c
c c

20

Typechecking and Modules for Multi-Methods Chambers & Leavens

Complexity. Prior to typechecking, we precompute for each class the partial order of its concrete
subclasses. With this set-up, the time complexity of computingtop-concrete-conforming-subclasses(c,
t) is O(Cconcrete). All methods are checked against each of the top concrete class vectors, leading to an
overall time complexity forIsComplete(M, Cs, s) of O(M ⋅ Cs ⋅ Cconcrete) and for the entire
ComputeIsComplete algorithm ofO(S ⋅ M ⋅ Cconcrete).* In practice, we believe this algorithm can
be sped up by checking all signatures with the same name in a single pass.

4.6 Checking Consistency

To check the consistency of a set of method implementations with respect to a signature, we need to show
the absence of any regions of potential inconsistency where two method implementations are inherited by
a vector of concrete classes without an intervening method resolving the ambiguity. Our algorithm tackles
this problem by first computing the set of all pairs of mutually incomparable method implementations (i.e.,
all pairs of methods where neither method overrides the other). This set defines all those pairs of methods
that have the potential to be mutually ambiguous. For each pair, we then construct the set of class vectors
that are the tops of the lower bounds of the argument specializers of the two methods, i.e., the set of class
vectors that inherit from both specializer class vectors and are not overridden by any other such vectors.
Each of these vectors is the root of a cone of potential inconsistency. The following diagram highlights with
open circles the four top lower bounds constructed from the four incomparable combinations of methods
from the earlier diagram:

We wish to determine whether there exists a concrete argument vector in any of these cones that does not
inherit some other method resolving the ambiguity. To help us solve this problem, we observe that
determining the absence of concrete class vectors in a region of potential inconsistency is similar to the
problem of determining the absence of concrete class vectors in a region of potential incompleteness.
Accordingly, for each pair of incomparable methods, our algorithm first constructs a new set of methods
comprised of those methods in the original set that override both of the two incomparable methods, and then
it tests for completeness of this reduced set of methods with respect to the set of top lower bound class
vectors constructed above. If this subgraph is complete, then the two mutually-ambiguous methods are not
a source of inconsistency. In precise notation:

ComputeIsConsistent ≡
∀ s ∈ S. IsConsistent(relevant(M, s), s)

* Cs = 1 forComputeIsComplete.

MGCs(argtypes(s))

specializers(m1)
specializers(m3)

tops of cones of potential inconsistency

specializers(m2)

specializers(m4)

superclass
vectors

subclass
vectors

21

Typechecking and Modules for Multi-Methods Chambers & Leavens

To check the consistency of a set of method implementationsM with respect to a signatures, we first
compute the setMP of all pairs of incomparable methods inM. For each pair (m1, m2) in MP, we construct
the set of class vectorsTLBs that are the tops of the lower bounds of the argument specializers ofm1 and
m2.* We then construct the set of methodsM-reduced that override bothm1 andm2. Finally, we test for
completeness ofM-reduced with respect toTLBs ands.

IsConsistent(M, s) ≡
∀ (m1, m2) ∈ incomparable-pairs(M).

let TLBs = tlb(specializers(m1), specializers(m2), s),
M-reduced = { m ∈ M m ≤methm1 ∧ m ≤methm2 } in

IsComplete(M-reduced, TLBs, s)

where

incomparable-pairs(M) ≡ { (m1, m2) ∈ M×M ¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) }

tlb(, ’ , s) ≡ top-classes(lb(, ’ , s))

lb(, ’ , s) ≡ { ’’ ’’ ≤inh ∧ ’’ ≤inh ’ ∧ ’’ <: argtypes(s) }

Theorem 4. ComputeIsConsistent ⇒ ImplementationIsConsistent

Proof sketch. To show that our algorithm correctly detects inconsistencies in a set of methods with respect
to a signature, assume for the sake of contradiction that the algorithm reports success but that the methods
really are inconsistent. Then there must exist a vector of concrete classes that conforms to the argument
types of the signature but inherits no single most specific method implementation (by definition of
inconsistency). This vector must inherit at least two methods that are mutually unordered but are not
overridden by a third method that is inherited by the concrete class vector (by definition of “inheriting no
single most specific method”). The concrete class vector must inherit from a vector that is a top lower bound
of the specializers of the two methods (by definition of top). But there are no concrete class vectors that
inherit from this top class vector that do not also inherit from some other method that overrides the two
mutually-ambiguous methods (by the definition of completeness of the subgraph). Hence the original
assumption of inconsistency must be wrong.

Complexity. There can be at mostO(M2) incompatible pairs, each requiring constant time to produce.
This worst-case scenario occurs with completely flat sets of method implementations. There can be at most
O(Ck) top lower bounds of each of these pairs, wherek is the number of arguments of the message, each
computed in constant time; since we assumek is bounded by a constant, this term is polynomial. This worst
case scenario is quite unlikely in practice, however, and can only occur in a program with many type errors;
we would expect a small constant number of top lower bounds in normal programs with few type errors.
The reduced method set can be constructed inO(M) time, and its size can be on the same order asM; note
that, if there areO(M2) incompatible pairs, then the size ofM-reduced will be a small constant, so we are
being overly conservative by assuming it always is of sizeO(M). Therefore, each call toIsComplete(M-
reduced, TLBs, s) can require timeO(M ⋅ Ck ⋅ Cconcrete) (although we would expect something more
like O(M) in practice). This leads to a worst-case time complexity forIsConsistent(M, s) of O(M3 ⋅
(C2k + M) ⋅ Cconcrete), althoughO(M4 ⋅ Cconcrete) is a more likely worst-case time in practice.
The overall time for consistency checking of an entire program,ComputeIsConsistent, is thereforeO(S
⋅ M3 ⋅ (C2k + M) ⋅ Cconcrete) in the worst case andO(S ⋅ M4 ⋅ Cconcrete) in more reasonable
expected cases. As with completeness checking, we suspect that checking all signatures with the same name
in one pass will lead to faster typechecking in practice.

* We do not require the object inheritance partial order to be a downward semi-lattice, and so we cannot assume g.l.b.’s
of argument specializers exist. For our algorithm, g.l.b.’s are not required. We only need the set of “top lower
bounds,” i.e., those lower bounds that are not strictly less than any other lower bound.

c c c c

c c c c c c c c

22

Typechecking and Modules for Multi-Methods Chambers & Leavens

4.7 Algorithm Summary

Implementation-side typechecking ensures that the class inheritance graph and the method implementations
correctly implement the interface defined by the type graph and the signatures. We broke the problem of
implementation-side typechecking into three components: checking conformance, checking completeness,
and checking consistency. Solving these three subproblems is sufficient for showing that the implementation
is correct (Theorem 1). For each of these subproblems, an algorithm was presented and shown to imply its
specification.

Checking conformance of all method implementations against all signatures requires worst-case time of
O(M ⋅ (M ⋅ Cconcretek + S)) (wherek, the maximum number of message arguments, is bounded by
a constant), if inheritance without subtyping and shallow inheritance hierarchies are commonplace. We
expect that in practice the performance would be on the order ofO(M ⋅ (M + S)). (A simpler but
stricter version of conformance checking would require onlyO(M ⋅ S) time.) Checking completeness
of all method implementations against all signatures requiresO(S ⋅ M ⋅ Cconcrete). Checking
consistency of all method implementations against all signatures requiresO(S ⋅ M3 ⋅ (C2k + M) ⋅
Cconcrete) in contrived worst-case scenarios andO(S ⋅ M4 ⋅ Cconcrete) in more realistic situations.

Although the worst-case running time of our algorithm is worse than simply executing the specification
given for ImpementationTypeChecks, which has a worst-case running time ofO(S ⋅ Cconcretek ⋅
M), we believe that the the elimination of the factorCconcretek in practical cases is worthwhile. We leave
the checking of this belief for future work.

4.8 Discussion

The independence of inheritance and subtyping has a major impact on our algorithm. In conformance
checking of a specialized formal, our algorithm seeks out inheriting subclasses that do not conform to the
declared type of the formal and that do not invoke more specific methods. If inheritance and subtyping were
joined, then the checking of specialized formals would be trivial, requiring only constant time. Moreover, a
consequence of our type system is that the addition of a new subclass can create type errors in methods
inherited by the subclass, if the new subclass does not conform to some specialized formal’s argument type.
Our type system allows the use of overriding to remove these type errors, but this solution adds
implementation complexity and may not be considered desirable from a language design perspective.*

These issues are not limited to multi-method-based languages, however. It seems that the combination of
allowing inheritance without subtyping and avoiding retypechecking of inherited methods in subclasses
leads to a type system with these properties, whether or not multi-methods are present. For example, the
TOOPLE singly-dispatched language places restrictions on inheritance to avoid conformance errors [Bruce
et al. 93]. TOOPLE includes aClassType that represents the interface to “self” within a method; subclasses
are required to preserve this interface. In our type system, there is no centralClassType, but instead each
method describes its own local constraints on the types of all its specialized arguments, in a decentralized
fashion more appropriate to multi-methods.

During checking of completeness and consistency, our algorithm deals with the independence of subtyping
and code inheritance by passing the signature being checked to all the various subproblems. Each of these
subproblems restricts the set of classes under consideration to those that also conform to the appropriate
argument type of the signature. This has the same effect as producing a new class and inheritance graph
containing only those classes that conform to the signature, and then processing this reduced graph as if
inheritance and subtyping were the same.

* It is easy to omit this feature from our type system. In fact, earlier versions of this work did exactly that [Chambers
& Leavens 94].

23

Typechecking and Modules for Multi-Methods Chambers & Leavens

Our programming language model also distinguishes abstract and concrete classes. This distinction appears
in the completeness and consistency checking algorithms where the tops of the set of vectors of concrete
classes are calculated from a vector of (potentially abstract) classes. We feel that handling this distinction in
the typechecking algorithm is of crucial importance in being able to typecheck realistic programs. Our
current body of Cecil code includes more than 250 abstract classes, nearly a third of all classes, and virtually
all of the abstract classes would be rejected as incompletely implemented if our algorithm did not treat them
specially.

We allow each multi-method to decide independently which formals are specialized and which are not;
multi-methods are completely independent and not restricted by a “congruent lambda list” rule as are CLOS
multi-methods. This flexibility also allows our language model to include singly-dispatched languages as a
special case, enabling more direct comparisons of type systems. Mixing specialized and unspecialized
formals is fairly easy to accommodate in our algorithm. Unspecialized formals are modeled as specialized
on a classany that is a superclass of all other classes. During conformance checking, unspecialized formals
are checked against signatures using normal contravariant rules, while specialized formals are checked
independently of covering signatures. Completeness and consistency checking are unaffected by the
difference between specialized and unspecialized formals.

5 Modules
Object-oriented methods encourage programmers to develop reusable libraries of code. However, multi-
methods can pose obstacles to smoothly integrating code that was developed independently. Unlike with
singly-dispatched systems, if two classes that subclass a common superclass are combined in a program, it
is possible for incompleteness or inconsistency to result where none occurs with either subclass alone. The
additional expressiveness and flexibility of multi-methods creates new pitfalls for integration.

Standard module systems, such as the Common Lisp package system, help to manage the global name
space, and in some circumstances the name hiding they provide can serve to avoid integration problems. But
Common Lisp packages do not allow a CLOS multi-method to be added to a global generic function within
a particular package, without exposing the presence of the multi-method to all invokers of the generic
function.* As CLOS resolves method ambiguities automatically, independently-developed CLOS packages
can work in isolation but silently fail to give correct results when combined. No prior module system for a
multi-method language allows a library module to be certified as free of static type errors, independently of
its use in a program.

Encapsulation and modularity of multi-methods is a related problem. To support careful reasoning and to
ease maintenance, a data structure’s implementation may be encapsulated [Parnas71, Parnas72, Liskov &
Zilles 74]. But previous multi-method languages do not provide the same support for encapsulation as
abstract data type-based languages such as CLU [Liskovet al. 77, Liskovet al. 81] or singly-dispatched
object-oriented languages such as C++ and even Smalltalk. In ADT-based or singly-dispatched languages,
direct access to an object’s representation can be limited to a statically-determined region of the program.
An earlier approach to encapsulation in Cecil suffered from the problem that privileged access could always
be gained by writing methods that specialized on the desired data structures [Chambers 92].

We have developed a module system for Cecil that addresses these shortcomings of existing multi-method
languages. This system can restrict access to parts of an implementation to a statically-determined region of
program text while preserving the flexibility of multi-methods. Individual modules can be reasoned about
and typechecked in isolation from modules not explicitly imported. Modules canextend existing modules
with subclasses, subtypes, and augmenting multi-methods. If any conflicts arise between independent

* CLOS does allow an entire generic function to be private to a single package, but CLOS does not support generic
functions whose member multi-methods have different visibilities.

24

Typechecking and Modules for Multi-Methods Chambers & Leavens

extensions, they are resolved throughresolving modules that extend each of the conflicting modules. A
simple check for the presence of the necessary resolving modules is all that is needed at link-time to
guarantee type safety.

In this paper we present our module system informally. We defer a more formal treatment of modules and
multi-methods to a future paper.

5.1 Module Basics

The core of our module system provides standard name space management, as in Modula-2 [Wirth 88]. Like
Common Lisp and Oberon-2, we do not tie the module notion to the notion of classes or types [Szyperski
92]. A program is a sequence of one or more modules, one of which is calledMain . Each module contains
a group of declarations; there is no code that appears outside of a module, and for simplicity modules do not
nest. The declarations in a module are taggedpublic (the default) orprivate . A module may explicitly
import another module, which has the effect of making the imported module’s public declarations visible in
the importing module. Private declarations are encapsulated within a module and are invisible to other
modules.* Import declarations themselves can be taggedpublic orprivate . The declarations imported
through a public import declaration are visible in the module’s public interface, while declarations imported
through a private import declaration are hidden from clients.

We illustrate the core of our module system with the following example:
module Complex {

type complex subtypes num;
signature +(complex, complex):complex;
method new_complex(x:real, y:real):complex {...}

}
module Main {

private import Complex;
method main():void {

let c := new_complex(3.5, 4.25);
... }

}

The visibility of declarations determines the set of method implementations considered during method
lookup. All declarations visible at the call site, either by being declared in the current module or by being
imported as a public declaration from another module (potentially through a chain of public imports
declarations), are considered in effect for the purposes of resolving method lookup. All other declarations
are invisible and do not affect method lookup. This guarantees that unrelated code, even code that defines
methods with the same name as the message being sent, has no effect on method lookup and can be ignored
when reasoning about the behavior of the program or when statically typechecking it. The scope of a private
declaration is limited to the enclosing module, and consequently no other module can be affected by a
private declaration.

Using the sending scope to determine the set of potentially callable methods allows a module to extend and
customize imported types and representations without affecting unrelated modules or requiring changes to
the source code of imported modules [Hölzle 93, Harrison & Ossher 93]. For example, a text-processing
module can add tab-expansion behavior to string data structures without polluting the general interface to
strings as seen by unrelated modules. This local extension feature of multi-methods resolves a tension
observed in singly-dispatched languages of whether to add functionality as operations within the class or
external to the class.

* Our module system also includes a notion of explicitly-named friend modules which are able to access the private
declarations of a module, much as in C++.

25

Typechecking and Modules for Multi-Methods Chambers & Leavens

To typecheck a program, each module in the program is typechecked separately. Typechecking a module
involves performing both client-side typechecks of the expressions in the module and implementation-side
typechecks of conformance, completeness, and consistency, with respect to the declarations in the current
module and the public declarations of any explicitly imported modules. Because each module can be
typechecked independently, examining only a small portion of the declarations in a large program,
typechecking can run much faster. Moreover, the public interface of each module can be typechecked in
isolation, allowing the compiler to assume that each module’s public interface is type-correct when
typechecking modules that import it, potentially speeding typechecking further.

5.2 Subtyping and Extensions of Modules

Unfortunately, subtyping creates a problem for the basic module design presented above. Consider the
following example in which aCartComplex module implements thecomplex type:*

module Complex {
type complex subtypes num;
signature +(complex, complex):complex;

}
module CartComplex {

import Complex;
template representation cartesian conforms complex;
private field x(c @cartesian:cartesian):real;
private field y(c @cartesian:cartesian):real;
method +(c1 @cartesian:complex,c2 @cartesian:complex):complex {

new_cartesian(c1.x + c2.x, c1.y + c2.y) }
method new_cartesian(r,i:real):complex {

new cartesian(x:=r, y:=i) }
}
module Storage {

import Complex;
private import CartComplex; -- hide this use ofCartComplex from clients
var c1, c2: complex; -- variables visible to modules importingStorage
method store() {

c1 := new_cartesian(3.14, 15.9);
c2 := new_cartesian(-2.5, 227.0);

}
}
module Main {

private import Storage;
private import Complex;
method main() {

store();
... c1 + c2 ...; -- message not understood!

}
}

In this example, the method+ for two cartesian objects is not visible where it is called in themain routine.
The cartesian objects have “outrun” the scope of their methods, passing through the moduleStorage
which hides its use ofCartComplex from its clients. We could fix the problem by requiringMain to
explicitly import CartComplex , but there is no particular reason thatMain should know about that
module. Alternatively, we could alter our visibility rules so that the set of potentially callable methods is
based on the module that defines the dynamic classes of the argument objects rather than the sending
module; this approach is effectively how singly-dispatched systems such as C++ and Smalltalk determine

* Thefield declaration introduces the Cecil equivalent of instance variables.

26

Typechecking and Modules for Multi-Methods Chambers & Leavens

the operation to invoke. However, if the classes of the arguments of a multi-method are defined in separate
modules, then these different perspectives on the set of available methods need to be reconciled somehow.
Moreover, an object-centered approach would sacrifice the ability of the sending module to customize its
view of the interfaces of the objects it manipulates.

The key insight underlying our solution to this problem is to observe that if theMain module imported the
CartComplex module (and every other module that defined a class conforming to thecomplex type),
then the appropriate implementations of the+ signature would be visible at the call site. The trick is to adjust
the visibility rules so that the declarations inCartComplex are considered visible at method-lookup time
without requiringMain or Complex to explicitly list CartComplex or any other implementation of
complex at program-definition time.

Our solution achieves this implicit importing of declarations through the notion ofextension modules. If a
modulem declares a class or type that conforms or subtypes, respectively, from a type declared in another
module n, then we require thatm be defined as an extension ofn. In the complex number example,
CartComplex must be declared as an extension ofComplex , sincecartesian in CartComplex
conforms tocomplex in Complex:

module Complex { ... }
module CartComplex extends Complex { ... }

For the purposes of determining which declarations are visibledynamically at message-lookup time, the
public declarations in an extension module are imported automatically whenever the extended module is
imported (either explicitly or recursively through additional layers of module extension). However, for the
purposes of reasoningstatically about code or typechecking clients such asMain , only the public interfaces
of the explicitly imported modules need to be examined. For example, to statically typecheck the body of
themain function, only the public interface ofComplex needs to be considered; the presence (or absence)
of CartComplex is irrelevant. This distinction preserves the ability to easily extend existing code without
rewriting or even retypechecking clients. Typechecking theCartComplex module will ensure that the
interface assumed by clients ofComplex is conformingly, completely, and consistently implemented. This
split between checking clients against explicitly imported interfaces and checking extensions of the
interface resembles the “modularity” obtained by the use of legal subtyping in the verification of object-
oriented languages with subtyping [Leavens & Weihl 90, Leavens 91].

To provide more control over the interface seen by extension modules, declarations in a module may be
taggedprotected . A protected declaration is not visible to clients that import the module explicitly,
but it is visible to extension modules; in this respect it is analogous to theprotected construct in C++.
Extension modules automatically import the public and protected declarations of the module(s) they extend.
For example, thex andy fields inCartComplex would probably be taggedprotected , to allow future
extensions of cartesian complex numbers access to the representation of cartesian complex numbers.

The extension mechanism, together with the restriction that a subtype of a type can only be defined in the
same module or in an extension module of the module that defines the type being subtyped, fixes the
problem of objects outrunning their methods while preserving the ability of each scope to extend and
customize a set of methods. Furthermore, it does not require changes to existing modules when new
extension modules are added to a program, and extension modules do not have to be considered when
reasoning statically about a module.

5.3 Resolving Module Conflicts

Unfortunately, multi-methods create a final problem with this module design. Two independently-developed
modules can extend a common module correctly in isolation by incompletely or inconsistently in
combination. For example, consider writing aPolarComplex module with a different representation for
complex numbers:

27

Typechecking and Modules for Multi-Methods Chambers & Leavens

module PolarComplex extends Complex {
template representation polar conforms complex;
private field rho(c @polar:complex):real;
private field theta(c @polar:complex):real;
method +(c1 @polar:complex, c2 @polar:complex):complex {...}
method new_polar(r,t:real):complex {

new polar(rho:=r,theta:=t) }
}

If only one of theCartComplex or PolarComplex modules is linked into a program, then no conflicts
arise. However, if both modules are used, then any variable of typecomplex , such asc1 andc2 in
Storage , might hold an instance of either thecartesian or polar classes. When sending the+
message inmain , if at run-timec1 was an instance ofcartesian while c2 was an instance ofpolar ,
then+ will not be understood; the program is incomplete. But viewed independently, each module is type-
correct.

To solve this problem, we impose a well-formedness condition on the set of modules comprising a program:
for each modulem in the program, there must exist asingle most-extending module n which extends, directly
or indirectly, all other modules that extendm; a module with no extensions is its own single most extending
module. More precisely,

ProgramIsWellFormed ≡
∀ m ∈ Program.

∃ n ∈ Program.
n = most-extending-module({ m’ | m’ ≤modulem })

where

m= most-extending-module(Ms) ≡
m ∈ Ms ∧
∀ m’ ∈ Ms. m ≤modulem’

and where≤module is the reflexive, transitive closure of themodule-extends relation andProgram is the
set of modules in the program. Such a most extending module will import all other extensions, statically
witness all implementations of types declared in the modules, and consequently be responsible for resolving
any ambiguities among the various extension modules.

In our running example, if neither or only one ofCartComplex or PolarComplex is present, then the
system of modules in this example is well-formed. However, when both are present, then there is no single
most extending module forComplex . To combine the two representations of complex numbers into a
single program, the programmer must also create a newresolving module that extends both:

module CPComplex extends CartComplex, PolarComplex {
method +(c1 @cartesian:complex, c2 @polar:complex):complex {

... }
method +(c1 @polar:complex, c2 @cartesian:complex):complex {

c2 + c1 }
}

This module extends the two representations and adds the necessary “glue” methods to make the two
representations interoperate. For the purposes of run-time method lookup, the declarations in this module
are visible to any module that importsComplex , through the rules for extension modules. When the
CPComplex module is typechecked, it will ensure that the combination of the two representations forms a
conformant, complete, and consistent implementation of thecomplex type, again according to the normal
rules for typechecking a module. By requiring such a most extending module that statically witnesses and
checks all other extensions of a module, we guarantee that a complete program can have no message errors.

28

Typechecking and Modules for Multi-Methods Chambers & Leavens

As the programmer combines independently-developed code into larger libraries, the programmer creates
the necessary resolving modules. At link-time, the linker can test quickly for the existence of the necessary
resolving modules. No typechecking is performed at link-time; resolving modules are written and
typechecked independently during program development just like other modules. A programming
environment could automatically create and typecheck any omitted resolving modules, reporting whenever
new methods need to be written to eliminate incompleteness or inconsistency.

To summarize, by requiring the existence of single most extending modules which resolve incompleteness
or inconsistency problems arising from the combination of independently-developed multi-methods, we
ensure that there exist modules whose static checking ensures that the program has no message lookup
errors. Checking for the existence of such modules must be done at link-time, but creating and typechecking
the resolving modules can be done as part of normal program development.

6 Conclusions
The work presented in this paper targets problems that arise when large programs are constructed in
languages based on multi-methods. To secure the benefits of static typechecking for multi-methods, we
designed a flexible static type system and developed a supporting typechecking algorithm. We addressed a
broader class of languages than previous work, including those that incorporate mutable state, separate
subtyping and code inheritance, abstract classes, mixed specialized and unspecialized formals, and graph-
based multi-method lookup semantics. Our algorithm breaks down the typechecking problem into client-
side and implementation-side checking, then further subdivides implementation-side checking into
conformance, completeness, and consistency checking. A key insight underlying our algorithm is that the
space of concrete class vectors conforming to a signature can be divided into cone-shaped regions, where
the correctness of the tops of the cones implies correctness of the class vectors contained in the cones.

To help organize programs with multi-methods, we designed a module system that enables portions of a
program to be encapsulated within modules, protecting this code from unwanted external access and
insulating clients from the details of the hidden code. Our design retains the advantages of multi-methods,
including allowing clients to extend and customize an existing set of methods, while enabling each module
to be typechecked independently. The key new features of our design are extension modules and resolving
modules. The declarations in an extension module are automatically imported into the extended module, for
the purposes of run-time method lookup. By restricting subtyping and conformance to cross only extension
module boundaries, and by requiring the final program to include for each module a single most extending
module which can ensure the completeness and consistency of independently-developed extensions, we
retain the ability to typecheck client code using only the public interfaces of explicitly imported modules.

We believe that these two contributions are important steps towards modular development of robust
software in multi-method-based languages. In particular, the combination of typechecking, modules, and
multi-methods allows programmers to integrate the advantages of both abstract data types and object-
oriented programming [Cook 90]. One can simulate the ADT mechanisms of languages like CLU and Ada
by hiding the data representation in a module. Binary methods in the module can directly access the
representation of two objects of the same class (or any other class in the module), something not possible in
Smalltalk, while disallowing access from outside the module. Moreover, multiple implementations of an
ADT can coexist and interoperate in a single program, which is easily done in Smalltalk but not CLU or
Ada. One can simulate single-dispatching object-oriented languages such as Smalltalk by specializing only
on the first argument of a method. But even when the programmer chooses to specialize on more than one
argument, independently developed classes may still be combined in a single program in a type-safe manner,
using resolving modules verifying type safety statically.

At least two questions remain: will typechecking of individual modules be fast enough in practice, and will
the restrictions placed on module extensions be too severe in practice? To gain the necessary experience

29

Typechecking and Modules for Multi-Methods Chambers & Leavens

with which to answer these questions, we are implementing our typechecking algorithm and module system
in the context of the Cecil language. At present, over 50,000 lines of Cecil code have been written, in a
version of the language lacking modules and full static type checking, and we expect that revising this code
base to use modules and respect the restrictions of static type checking will be an effective test of the
practicality of our design.

Acknowledgments

We would like to thank to William Cook for discussions about the modularity problems of multi-methods.
Thanks also to Giuseppe Castagna, Jens Palsberg, Tim Wahls, David Fernandez-Baca, Jeffrey Dean, David
Grove, Charles Garrett, and the anonymous OOPSLA’94 and TOPLAS referees for their helpful comments
on earlier versions of this paper and for their encouragement.

Chambers’s work is supported in part by a National Science Foundation Research Initiation Award (contract
number CCR-9210990), an NSF Young Investigator award (contract number CCR-9457767), and gifts from
Sun Microsystems, IBM, Pure Software, and Edison Design Group. Leavens’s work is supported in part by a
National Science Foundation Research Initiation Award (contract number CCR-9108654) and an NSF grant
(contract number CCR-9503168).

More information on the Cecil language and implementation project can be found through the World Wide
Web underhttp://www.cs.washington.edu/research/projects/cecil and via anonymousftp from
cs.washington.edu:/pub/chambers.

References
[Ada 83] Reference Manual for the Ada Programming Language, ANSI/MIL-STD 1815A, 1983.
[Agrawal et al. 91] Rakesh Agrawal, Linda G. DeMichiel, and Bruce G. Lindsay. Static Type Checking of Multi-

Methods. InOOPSLA ’91 Conference Proceedings, pp. 113-128, Phoenix, AZ, October, 1991. Published as
SIGPLAN Notices 26(11), November, 1991.

[America 87] Pierre America. Inheritance and Subtyping in a Parallel Object-Oriented Language. InECOOP ’87
Conference Proceedings, pp. 234-242, Paris, France, June, 1987. Published asLecture Notes in Computer Science
276, Springer-Verlag, Berlin, 1987.

[America & van der Linden 90] Pierre America and Frank van der Linden. A Parallel Object-Oriented Language with
Inheritance and Subtyping. InOOPSLA/ECOOP ’90 Conference Proceedings, pp. 161-168, Ottawa, Canada,
October, 1990. Published asSIGPLAN Notices 25(10), October, 1990.

[Amiel et al. 94] Eric Amiel, Olivier Gruber, and Eric Simon. Optimizing Multi-Method Dispatch Using Compressed
Dispatch Tables. InOOPSLA ’94 Conference Proceedings, Portland, OR, October, 1994.

[Barnes 91] J. G. P. Barnes.Programming in Ada (third edition). Addison-Wesley, Wokingham, England, 1991.
[Bobrow et al. 88] D. G. Bobrow, L. G. DeMichiel, R. P. Gabriel, S. E. Keene, G. Kiczales, D. A. Moon. Common

Lisp Object System Specification X3J13.SIGPLAN Notices 23(Special Issue), September, 1988.
[Bracha & Griswold 93] Gilad Bracha and David Griswold. Strongtalk: Typechecking Smalltalk in a Production

Environment. InOOPSLA ’93 Conference Proceedings, pp. 215-230, Washington, D.C., September, 1993.
Published asSIGPLAN Notices 28(10), October, 1993.

[Bruceet al. 93] Kim B. Bruce, Jon Crabtree, Thomas P. Murtagh, Robert van Gent, Allyn Dimock, and Robert Muller.
Safe and Decidable Type Checking in an Object-Oriented Language. InOOPSLA ’93 Conference Proceedings, pp.
29-46, Washington, D.C., September, 1993. Published asSIGPLAN Notices 28(10), October, 1993.

[Bruceet al. 95] Kim B. Bruce, Luca Cardelli, Giuseppe Castagna, The Hopkins Objects Group, Gary T. Leavens, and
Benjamin Pierce. On Binary Methods. Technical report #95-08, Department of Computer Science, Iowa State
University, May, 1995.

[Canninget al. 89] Peter S. Canning, William R. Cook, Walter L. Hill, and Walter G. Olthoff. Interfaces for Strongly-
Typed Object-Oriented Programming. InOOPSLA ’89 Conference Proceedings, pp. 457-467, New Orleans, LA,
October, 1989. Published asSIGPLAN Notices 24(10), October, 1989.

[Cardelli 88] Luca Cardelli. A Semantics of Multiple Inheritance.Information and Computation 76(2/3), pp. 138-164,
February/March, 1988.

[Cardelli & Wegner 85] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction, and
Polymorphism.ACM Computing Surveys 17(4), pp. 471-522, December, 1985.

30

Typechecking and Modules for Multi-Methods Chambers & Leavens

[Cardelli & Mitchell 89] Luca Cardelli and John C. Mitchell. Operations on Records. InProceedings of the
International Conference on the Mathematical Foundation of Programming Semantics, New Orleans, LA, 1989.

[Castagnaet al. 92] Giuseppe Castagna, Giorgio Ghelli, and Giuseppe Longo. A Calculus for Overloaded Functions
with Subtyping. InProceedings of the 1992 ACM Conference on Lisp and Functional Programming, pp. 182-192,
San Francisco, June, 1992. Published asLisp Pointers 5(1), January-March, 1992.

[Chambers 92] Craig Chambers. Object-Oriented Multi-Methods in Cecil. InECOOP ’92 Conference Proceedings,
pp. 33-56, Utrecht, the Netherlands, June/July, 1992. Published asLecture Notes in Computer Science 615, Springer-
Verlag, Berlin, 1992.

[Chambers 93] Craig Chambers. The Cecil Language: Specification and Rationale. Technical report #93-03-05,
Department of Computer Science and Engineering, University of Washington, March, 1993.

[Chambers & Leavens 94] Craig Chambers and Gary T. Leavens. Typechecking and Modules for Multi-Methods. In
OOPSLA ’94 Conference Proceedings, pp. 1-15, Portland, OR, October, 1994. Published asSIGPLAN Notices
29(10), October, 1994.

[Chambers & Leavens 95] Craig Chambers and Gary T. Leavens. Typechecking and Modules for Multi-Methods.
Technical report #95-19, Department of Computer Science, Iowa State University, June, 1995.

[Chen & Turau 94] Weimin Chen and Volker Turau. Efficient Dynamic Look-Up Strategy for Multi-Methods. In
ECOOP ’94 Conference Proceedings, Bologna, Italy, July, 1994.

[Cooket al. 90] William Cook, Walter Hill, and Peter Canning. Inheritance is not Subtyping. InConference Record of
the 17th Annual ACM Symposium on Principles of Programming Languages, San Francisco, CA, January, 1990.

[Cook 90] William Cook. Object-Oriented Programming versus Abstract Data Types. InProceedings of the Workshop
on the Foundations of Object-Oriented Languages, pp. 151-178, Noordwijkerhout, the Netherlands, May/June,
1990. Published asLecture Notes in Computer Science 489, Springer-Verlag, New York, 1991.

[Cook 92] William R. Cook. Interfaces and Specifications for the Smalltalk-80 Collection Classes. InOOPSLA ’92
Conference Proceedings, pp. 1-15, Vancouver, Canada, October 1992. Published asSIGPLAN Notices 27(10),
October 1992.

[Ghelli 91] Giorgio Ghelli. A Static Type System for Message Passing. InOOPSLA ’91 Conference Proceedings, pp.
129-145, Phoenix, AZ, October, 1991. Published asSIGPLAN Notices 26(11), November, 1991.

[Goldberg & Robson 83] Adele Goldberg and David Robson.Smalltalk-80: The Language and its Implementation.
Addison-Wesley, Reading, Mass., 1983.

[Goguen 84] Joseph A. Goguen. Parameterized Programming.IEEE Transactions on Software Engineering 10(5), pp.
528-543, September, 1984.

[Harrison & Ossher 93] William Harrison and Harold Ossher. Subject-Oriented Programming (A Critique of Pure
Objects). InOOPSLA ’93 Conference Proceedings, pp. 411-428, Washington, D.C., September, 1993. Published as
SIGPLAN Notices 28(10), October, 1993.

[Hölzle 93] Urs Hölzle. Integrating Independently-Developed Components in Object-Oriented Languages. InECOOP
’93 Conference Proceedings, pp. 36-56, Kaiserslautern, Germany, July, 1993. Published asLecture Notes in
Computer Science 707, Springer-Verlag, Berlin, 1993.

[Hudaket al. 92] Paul Hudak, Simon Peyton Jones, Philip Wadler, Brian Boutel, Jon Fairbairn, Joseph Fasel, María
M. Guzmán, Kevin Hammond, John Hughes, Thomas Johnsson, Dick Kieburtz, Rishiyur Nikhil, Will Partain, and
John Peterson.Report on the Programming Language Haskell: A Non-strict, Purely Functional Language, Version
1.2. In SIGPLAN Notices 27(5), May, 1992.

[Leavens 91] Gary T. Leavens. Modular Specification and Verification of Object-Oriented Programs. IEEE Software
8(4), pp. 72-80, July, 1991.

[Leavens & Weihl 90] Gary T. Leavens and William E. Weihl. Reasoning about Object-Oriented Programs that use
Subtypes. InOOPSLA/ECOOP ’90 Conference Proceedings, pp. 212-223, Ottawa, Canada, October, 1990.
Published asSIGPLAN Notices 25(10), October, 1990.

[Liskov et al. 77] Barbara Liskov, Alan Snyder, Russell Atkinson, and J. Craig Schaffert. Abstraction Mechanisms in
CLU. Communications of the ACM 20(8), pp. 564-576, August, 1977.

[Liskov et al. 81] Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert, Robert Scheifler, and
Alan Snyder. CLU Reference Manual. Lecture Notes in Computer Science, volume 114, Springer-Verlag, New York,
NY, 1981.

[Liskov & Zilles 74] Barbara H. Liskov and Stephen N. Zilles. Programming with Abstract Data Types. InProceedings
of the ACM SIGPLAN Conference on Very High Level Languages, pp. 50-59, April, 1974. Published asSIGPLAN
Notices 9(4), 1974.

[Meyer 88] Bertrand Meyer.Object-Oriented Software Construction. Prentice Hall, New York, 1998.

31

Typechecking and Modules for Multi-Methods Chambers & Leavens

[Meyer 92] Bertrand Meyer.Eiffel: The Language. Prentice Hall, New York, 1992.
[Milner et al. 90] Robin Milner, Mads Tofte, and Robert Harper.The Definition of Standard ML. MIT Press,

Cambridge, MA, 1990.
[Mössenböck & Wirth 91] H. Mössenböck and Niklaus Wirth. The Programming Language Oberon-2.Structured

Programming 12(4), 1991.
[Mugridgeet al. 91] W. B. Mugridge, J. G. Hosking, and J. Hamer. Multi-Methods in a Statically-Typed Programming

Language. Technical report #50, Department of Computer Science, University of Auckland, 1991. Also appears in
ECOOP ’91 Conference Proceedings, Geneva, Switzerland, July, 1991.

[Nelson 91] Greg Nelson, editor.Systems Programming with Modula-3. Prentice Hall, Englewood Cliffs, NJ, 1991.
[Paepcke 93] Andreas Paepcke.Object-Oriented Programming: The CLOS Perspective. MIT Press, 1993.
[Palsberg & Schwartzbach 94] Jens Palsberg and Michael I. Schwartzbach.Object-Oriented Type Systems. John Wiley

& Sons, 1994.
[Parnas 71] D. L. Parnas. Information Distribution Aspects of Design Methodology.Proceedings of IFIP Congress 71.

IFIP, 1971.
[Parnas 72] D. L. Parnas. On the Criteria to be Used in Decomposing Systems into Modules.Communications of the

ACM 15(5), pp. 330-336, May, 1972.
[Paulson 91] Laurence C. Paulson.ML for the Working Programmer. Cambridge University Press, 1991.
[Pierce & Turner 92] Benjamin C. Pierce and David N. Turner. Statically Typed Multi-Methods via Partially Abstract

Types. Unpublished manuscript, October, 1992.
[Reynolds 80] John C. Reynolds. Using Category Theory to Design Implicit Conversions and Generic Operators. In

Neil D. Jones (ed.),Semantics-Directed Compiler Generation, Proceedings of a Workshop, pp. 211-258, Aarhus,
Denmark, January, 1980. Lecture Notes in Computer Science, volume 94, Springer-Verlag, New York, NY, 1980.

[Rouaix 90] Francois Rouaix. Safe Run-Time Overloading. InConference Record of the 17th Annual ACM Symposium
on Principles of Programming Languages, pp. 355-366, San Francisco, CA, January, 1990.

[Schaffertet al. 86] Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie Wilpolt. An Introduction
to Trellis/Owl. InOOPSLA ’86 Conference Proceedings, pp. 9-16, Portland, OR, September, 1986. Published as
SIGPLAN Notices 21(11), November, 1986.

[Snyder 86] Alan Snyder. Encapsulation and Inheritance in Object-Oriented Programming Languages. InOOPSLA ’86
Conference Proceedings, pp. 38-45, Portland, OR, September, 1986. Published asSIGPLAN Notices 21(11),
November, 1986.

[Steele 90] Guy L. Steele Jr.Common Lisp: The Language (second edition). Digital Press, Bedford, MA, 1990.
[Stroustrup 91] Bjarne Stroustrup.The C++ Programming Language (second edition). Addison-Wesley, Reading,

MA, 1991.
[Szyperski 92] Clemens A. Szyperski. Import is Not Inheritance - Why We Need Both: Modules and Classes. In

ECOOP ’92 Conference Proceedings, pp. 19-32, Utrecht, the Netherlands, June/July, 1992. Published asLecture
Notes in Computer Science 615, Springer-Verlag, Berlin, 1992.

[Touretzky 86] D. Touretzky.The Mathematics of Inheritance Systems. Morgan-Kaufmann, 1986.
[Wirfs-Brock & Wilkerson 88] Allen Wirfs-Brock and Brian Wilkerson. An Overview of Modular Smalltalk. In

OOPSLA ’88 Conference Proceedings, pp. 123-134, San Diego, CA, October, 1988. Published asSIGPLAN Notices
23(11), November, 1988.

[Wirth 88] Niklaus Wirth.Programming in Modula-2 (fourth edition). Springer-Verlag, Berlin, 1988.

31

Chambers & Leavens

Appendix A Correctness Theorems and Proofs

This appendix gives formal correctness proofs for our typechecking algorithm. The proofs use the
calculational format described by David Gries in his article “Teaching Calculation and Discrimination: A
More Effective Curriculum” (Communications of the ACM 34(3), pp. 44-55, March, 1991).

A.1 Problem Breakdown

We use two lemmas to help in the proof of Theorem 1.

Lemma 1. Let Ms be a finite set of methods. Then

|Ms| > 0 ∧ (∀ m1, m2 ∈ Ms. (∃ m ∈ Ms. m≤methm1 ∧ m ≤methm2))
⇒ (∃ m. m = least(Ms))

Proof: We proceed by induction on the size ofMs.

It will be convenient to consider two base cases. If the size ofMs is zero, then the result follows trivially,
because the first conjunct in the antecedent is false. If the size ofMs is one, then the single element ofMs is
the least element, and so the consequent is true.

For the inductive step, suppose that the size ofMs is n > 1 and that the lemma holds for all proper subsets
of Ms. SinceMs is non-empty, there is an elementp ∈Ms and a proper subsetMs’, such thatMs =Ms’ ∪
{ p}. We calculate as follows.

|Ms| > 0 ∧ (∀ m1, m2 ∈ Ms. (∃ m ∈ Ms. m≤methm1 ∧ m ≤methm2))

⇒ 〈by assumption of|Ms| > 1, by instantiation ofm1 to least(Ms’) (which exists becausen>1), and
by instantiation ofm2 to p, and predicate calculus〉

∃ m ∈ Ms. m ≤methleast(Ms’) ∧ m ≤meth p

⇔ 〈by the law of the excluded middle〉
∃ m ∈ Ms.

(m ∈Ms’ ⇒ m≤methleast(Ms’) ∧ m ≤meth p) ∧
(m ∉Ms’ ⇒ m≤methleast(Ms’) ∧ m ≤meth p)

⇔ 〈by definition ofleast〉
∃ m ∈ Ms.

(m ∈Ms’ ⇒ m = least(Ms’) ∧ m ≤meth p) ∧
(m ∉Ms’ ⇒ m≤methleast(Ms’) ∧ m ≤meth p)

⇔ 〈by transitivity of≤meth and definition ofleast〉
∃ m ∈ Ms.

(m ∈Ms’ ⇒ m = least(Ms’ ∪ {p})) ∧
(m ∉Ms’ ⇒ m≤methleast(Ms’) ∧ m ≤meth p)

⇔ 〈by assumption thatp is the only element ofMs not inMs’〉
∃ m ∈ Ms.

(m ∈Ms’ ⇒ m = least(Ms’ ∪ {p})) ∧
(m ∉Ms’ ⇒ m = p ∧ m ≤methleast(Ms’) ∧ m ≤meth p)

⇔ 〈by assumption thatp is the only element ofMs not inMs’〉
∃ m ∈ Ms.

(m ∈Ms’ ⇒ m = least(Ms’ ∪ {p})) ∧
(m ∉Ms’ ⇒ m = p ∧ m ≤methleast(Ms’) ∧ m ≤meth p)

32

Chambers & Leavens

⇒ 〈by definition of≤meth andleast〉
∃ m ∈ Ms.

(m ∈Ms’ ⇒ m = least(Ms’ ∪ {p})) ∧
(m ∉Ms’ ⇒ m = least(Ms’ ∪ {p}))

⇔ 〈by the law of the excluded middle andMs = Ms’ ∪ {p} 〉
∃ m ∈ Ms. m = least(Ms)

⇔ 〈by the range type ofleast〉
∃ m. m = least(Ms)

Lemma 2. Let s ∈ Sand ∈(Cconcrete)* be such that <: argtypes(s). Then

m= least(applicable-methods(s,))
⇒ m= least(applicable-methods(s,))

∧ (¬ ∃ m’ ∈ applicable-methods(s,). m’ ≤methm ∧ m’ ≠ m)
Proof: We calculate as follows.

m= least(applicable-methods(s,))

⇔ 〈by predicate calculus〉
m= least(applicable-methods(s,))
∧ m= least(applicable-methods(s,))

⇔ 〈by definition ofleast〉
m= least(applicable-methods(s,))
∧ m ∈ applicable-methods(s,) ∧ (∀ m’ ∈ applicable-methods(s,). m ≤methm’)

⇒ 〈by A ∧ B ∧ C ⇒ A ∧ C〉
m= least(applicable-methods(s,))
∧ (∀ m’ ∈ applicable-methods(s,). m ≤meth m’)

⇔ 〈by law of the excluded middle, to do a case analysis〉
m= least(applicable-methods(s,))
∧ (∀ m’ ∈ applicable-methods(s,). m ≤meth m’ ∧ (m ≠ m’ ∨ m = m’))

⇔ 〈by conjunction distributes over disjunction〉
m= least(applicable-methods(s,))
∧ (∀ m’ ∈ applicable-methods(s,). (m ≤meth m’ ∧ m ≠ m’) ∨ (m ≤meth m’ ∧ m = m’))

⇒ 〈by the fact that≤meth is an acyclic partial order〉
m= least(applicable-methods(s,))
∧ (∀ m’ ∈ applicable-methods(s,). ¬ (m’ ≤meth m) ∨ m = m’)

⇔ 〈by predicate calculus〉
m= least(applicable-methods(s,))
∧ (¬ ∃ m’ ∈ applicable-methods(s,). m’ ≤methm ∧ m’ ≠ m)

Theorem 1.
(ImplementationIsComplete ∧ ImplementationIsConsistent ∧ ImplementationIsConforming)
⇒ ImplementationTypechecks

Proof: We prove this theorem by the following calculation.

ImplementationIsComplete ∧ ImplementationIsConsistent ∧ ImplementationIsConforming

c c

c
c

c

c

c
c

c
c c

c
c

c
c

c
c

c
c

c
c

33

Chambers & Leavens

⇔ 〈by commutivity〉
ImplementationIsConforming ∧ ImplementationIsComplete ∧ ImplementationIsConsistent

⇔ 〈by definition〉
(∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∀ m ∈ applicable-methods(s,).

(¬ ∃ m’ ∈ applicable-methods(s,). m’ ≠ m ∧ m’ ≤methm) ⇒
<: argtypes(m) ∧ restype(m) ≤sub restype(s))

∧ (∀ s ∈ S. ∀ ∈(Cconcrete)*.
<: argtypes(s) ⇒

|applicable-methods(s,)| > 0)
∧ (∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∀ m1, m2 ∈ applicable-methods(s,).

∃ m ∈ applicable-methods(s,).
m ≤methm1 ∧ m ≤methm2)

⇔ 〈by (∀x.P(x)) ∧ (∀x.Q(x)) ⇔ ∀x.(P(x)∧Q(x)), twice; and((P⇒Q)∧(P⇒R)) ⇔ (P⇒(Q∧R)), twice〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
(∀ m ∈ applicable-methods(s,).

(¬ ∃ m’ ∈ applicable-methods(s,). m’ ≠ m ∧ m’ ≤methm) ⇒
<: argtypes(m) ∧ restype(m) ≤sub restype(s))

∧ (|applicable-methods(s,)| > 0)
∧ (∀ m1, m2 ∈ applicable-methods(s,).

∃ m ∈ applicable-methods(s,).
m ≤methm1 ∧ m ≤methm2)

⇒ 〈by Lemma 1 and the ranges ofapplicable-methods andleast〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
(∀ m ∈ applicable-methods(s,).

(¬ ∃ m’ ∈ applicable-methods(s,). m’ ≠ m ∧ m’ ≤methm) ⇒
<: argtypes(m) ∧ restype(m) ≤sub restype(s))

∧ (∃ m ∈ M. m = least(applicable-methods(s,)))

⇔ 〈by renaming m to m’’〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
(∀ m’’ ∈ applicable-methods(s,).

(¬ ∃ m’ ∈ applicable-methods(s,). m’ ≠ m’’ ∧ m’ ≤methm’’) ⇒
<: argtypes(m’’) ∧ restype(m’’) ≤sub restype(s))

∧ (∃ m ∈ M. m = least(applicable-methods(s,)))

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

c
c

34

Chambers & Leavens

⇔ 〈by predicate calculus, asm is not free in the universally quantified expression〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∃ m ∈ M.

m = least(applicable-methods(s,) ∧
(∀ m’’ ∈ applicable-methods(s,).

(¬ ∃ m’ ∈ applicable-methods(s,). m’ ≠ m’’ ∧ m’ ≤methm’’) ⇒
<: argtypes(m’’) ∧ restype(m’’) ≤sub restype(s))

⇒ 〈by instantiation ofm’’ to m〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∃ m ∈ M.

m = least(applicable-methods(s,) ∧
((¬ ∃ m’ ∈ applicable-methods(s,). m’ ≠ m ∧ m’ ≤methm) ⇒

<: argtypes(m) ∧ restype(m) ≤sub restype(s))

⇒ 〈by Lemma 2〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∃ m ∈ M.

m = least(applicable-methods(s,) ∧
(¬ ∃ m’ ∈ applicable-methods(s,). m’ ≠ m ∧ m’ ≤methm) ∧
((¬ ∃ m’ ∈ applicable-methods(s,). m’ ≠ m ∧ m’ ≤methm) ⇒

<: argtypes(m) ∧ restype(m) ≤sub restype(s))

⇒ 〈by (Q ∧ (Q ⇒R)) ⇒R〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∃ m ∈ M.

m = least(applicable-methods(s,) ∧
<: argtypes(m) ∧ restype(m) ≤sub restype(s)

⇔ 〈by definition〉
ImplementationTypechecks

A.2 Correctness of Conformance Checking Algorithm

We prove the correctness of the conformance checking algorithm with several lemmas and an auxiliary
definition. The auxuiliary definition, ofAbstractComputeIsConforming, is used as an intermediate stage
in the proof. It uses a definition of conformance that is similar toComputeIsConforming, but abstracts
away the computational details. This definition is given below.

AbstractComputeIsConforming ≡
UnspecializedAndResultConform ∧ SpecializersAreConforming

where:

UnspecializedAndResultConform ≡
∀ m ∈ M. ∀ s ∈ relevant-sigs(m, S).

abs-has-common-classes(m, argtypes(s)) ⇒ contra-unspec-args-co-result(m, s)

c
c

c
c

c
c

c
c

c
c

c

c
c

c
c
c

c

c
c

c
c

35

Chambers & Leavens

abs-has-common-classes(m,) ≡ ∃ ∈ covered-class-vecs(m) . <:

covered-class-vecs(m) ≡
{ ∈ (Cconcrete)* ≤inh specializers(m)

∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|
∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m) }

SpecializersAreConforming ≡
∀ m ∈ M. ∀ ∈ covered-class-vecs(m).

∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i

The definitions ofrelevant-sigs andcontra-unspec-args-co-result are the same as given in the main
body, but are repeated here for clarity.

contra-unspec-args-co-result(m, s) ≡
(∀ i ∈ indexes(specializers(m)).

specializers(m)i = any ⇒ argtypes(s)i ≤sub argtypes(m)i)
∧ restype(m) ≤sub restype(s)

relevant-sigs(m, Ss) ≡ { s ∈ Ss msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)| }

Theorem 2.ComputeIsConforming ⇒ ImplementationIsConforming

Proof: We use the lemmas below, as follows.

ComputeIsConforming

⇒ 〈by Lemma 4.〉
AbstractComputeIsConforming

⇒ 〈by Lemma 3.〉
ImplementationIsConforming

Lemma 3. AbstractComputeIsConforming ⇒ ImplementationIsConforming

Proof: If either the set of signatures,S, or the set of concrete classes,Cconcrete, is empty, then the consequent
is true, and so the theorem follows. We show that the lemma holds in the case where bothS andCconcrete
are nonempty, by the following calculation.

AbstractComputeIsConforming

⇔ 〈by definition〉
UnspecializedAndResultConform ∧ SpecializersAreConforming

⇔ 〈by definition〉
(∀ m ∈ M. ∀ s ∈ relevant-sigs(m, S).

abs-has-common-classes(m, argtypes(s)) ⇒ contra-unspec-args-co-result(m, s))
∧ (∀ m ∈ M. ∀ ∈ covered-class-vecs(m).

∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i)

t c c t

c c

c

c

c

c

c

36

Chambers & Leavens

⇔ 〈by definition ofrelevant-sigs〉
(∀ m ∈ M. ∀ s ∈ { s ∈ S msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)| }.

abs-has-common-classes(m, argtypes(s)) ⇒ contra-unspec-args-co-result(m, s))
∧ (∀ m ∈ M. ∀ ∈ covered-class-vecs(m).

∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i)

⇔ 〈by set theory〉
(∀ m ∈ M. ∀ s ∈ S .

msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)|
⇒ (abs-has-common-classes(m, argtypes(s))

⇒ contra-unspec-args-co-result(m, s)))
∧ (∀ m ∈ M. ∀ ∈ covered-class-vecs(m).

∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i)

⇔ 〈by interchange of quantifiers and the constant term rule, assumingS is nonempty〉
(∀ s ∈ S . ∀ m ∈ M.

msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)|
⇒ (abs-has-common-classes(m, argtypes(s))

⇒ contra-unspec-args-co-result(m, s)))
∧ (∀ s ∈ S . ∀ m ∈ M. ∀ ∈ covered-class-vecs(m).

∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i)

 contra-unspec-args-co-result(m, s)))
∧ (∀ s ∈ S . ∀ m ∈ M. ∀ ∈ covered-class-vecs(m).

∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i)

⇔ 〈by joining the term, twice〉
∀ s ∈ S . ∀ m ∈ M.

(msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)|
⇒ (abs-has-common-classes(m, argtypes(s))

⇒ contra-unspec-args-co-result(m, s)))
∧ (∀ ∈ covered-class-vecs(m).

∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i)

⇔ 〈by definition ofcovered-class-vecs(m)〉
∀ s ∈ S . ∀ m ∈ M.

(msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)|
⇒ (abs-has-common-classes(m, argtypes(s))

 ⇒ contra-unspec-args-co-result(m, s)))
∧ (∀ ∈ { ∈ (Cconcrete)* ≤inh specializers(m)

∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|
∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m) }.

∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i)

c

c

c

c

c

c

c

c

c

c

c c c

c

c

37

Chambers & Leavens

⇔ 〈by set theory〉
∀ s ∈ S . ∀ m ∈ M.

(msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)|
⇒ (abs-has-common-classes(m, argtypes(s))

⇒ contra-unspec-args-co-result(m, s)))
∧ (∀ ∈ (Cconcrete)* .

(≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m))
⇒ (∀ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

⇔ 〈by the constant term rule, assumingCconcrete is nonempty〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

(msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)|
⇒ (abs-has-common-classes(m, argtypes(s))

⇒ contra-unspec-args-co-result(m, s)))
∧ ((≤inh specializers(m)

∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|
∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m))

⇒ (∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

⇔ 〈by definition ofabs-has-common-classes(m, argtypes(s))〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

(msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)|
⇒ ((∃ ∈ covered-class-vecs(m) . <: argtypes(s))

⇒ contra-unspec-args-co-result(m, s)))
∧ ((≤inh specializers(m)

∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|
∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m))

⇒ (∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

⇔ 〈by definition ofcovered-class-vecs(m)〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

(msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)|
⇒ ((∃ ∈ { ∈ (Cconcrete)* ≤inh specializers(m)

∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|
∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m) } .

 <: argtypes(s))
⇒ contra-unspec-args-co-result(m, s)))

∧ ((≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m))
⇒ (∀ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

c
c

c

c

c

c

c

c

c

c c

c

c

c

c

c c c

c
c

c

c

c

38

Chambers & Leavens

⇔ 〈by set theory〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

(msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)|
⇒ ((∃ ∈ (Cconcrete)* .

≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s))

⇒ contra-unspec-args-co-result(m, s)))
∧ ((≤inh specializers(m)

∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|
∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m))

⇒ (∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

⇔ 〈by definition ofcontra-unspec-args-co-result(m, s)〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

(msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)|
⇒ ((∃ ∈ (Cconcrete)* .

≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s))

⇒ ((∀ i ∈ indexes(specializers(m)).
specializers(m)i = any ⇒ argtypes(s)i ≤sub argtypes(m)i)

∧ restype(m) ≤sub restype(s)))))
∧ ((≤inh specializers(m)

∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|
∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m))

⇒ (∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

⇔ 〈by (P⇒ (Q ⇒ R)) ⇔ (P∧ Q ⇒ R)〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

(msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)|
∧ (∃ ∈ (Cconcrete)* .

≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s)))

c

c
c

c
c

c

c

c

c

c
c

c
c

c

c

c

c

c
c

c
c

39

Chambers & Leavens

⇒ ((∀ i ∈ indexes(specializers(m)).
specializers(m)i = any ⇒ argtypes(s)i ≤sub argtypes(m)i)

∧ restype(m) ≤sub restype(s))))
∧ ((≤inh specializers(m)

∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|
∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m))

⇒ (∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

⇒ 〈by (P⇒ Q) ⇒ (P∧ R ⇒ Q), twice〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)|
∧ ≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ (∃ ∈ (Cconcrete)* .

≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s))

⇒ ((∀ i ∈ indexes(specializers(m)).
specializers(m)i = any ⇒ argtypes(s)i ≤sub argtypes(m)i)

∧ restype(m) ≤sub restype(s))))
msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)|
∧ ≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ (∃ ∈ (Cconcrete)* .

≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s))

⇒ (∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

c

c

c

c

c

c
c

c

c
c

c

c
c

c

c
c

c

40

Chambers & Leavens

⇔ 〈by ((P⇒ Q) ∧ (P⇒ R)) ⇔ (P⇒ Q ∧ R)〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)| ∧ ≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ (∃ ∈ (Cconcrete)* .

≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s))

⇒ ((∀ i ∈ indexes(specializers(m)).
specializers(m)i = any ⇒ argtypes(s)i ≤sub argtypes(m)i)

∧ (∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i)

∧ restype(m) ≤sub restype(s))

⇔ 〈by joining the term〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)| ∧ ≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ (∃ ∈ (Cconcrete)* .

≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s))

⇒ ((∀ i ∈ indexes(specializers(m)).
(specializers(m)i = any ⇒ argtypes(s)i ≤sub argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

∧ restype(m) ≤sub restype(s))

⇒ 〈by P⇔ P∧ P, the instantiation rule for existential quantifiers, and transitivity of implication〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)| ∧ ≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s)

⇒ ((∀ i ∈ indexes(specializers(m)).
(specializers(m)i = any ⇒ argtypes(s)i ≤sub argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

∧ restype(m) ≤sub restype(s))

c
c

c
c

c

c
c

c

c
c

c
c

c

c
c

c

c
c

c
c

c

41

Chambers & Leavens

⇒ 〈by (P⇒ Q) ⇔ (P⇒ P ∧ Q), and (A⇒ B ∧ C) ⇒ (A ⇒B)〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)| ∧ ≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s)

⇒ (<: argtypes(s)
∧ (∀ i ∈ indexes(specializers(m)).

(specializers(m)i = any ⇒ argtypes(s)i ≤sub argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

∧ restype(m) ≤sub restype(s))

⇔ 〈by definition of <: for vectors| | = |argtypes(s)|, and law of excluded middle〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)| ∧ ≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s) ∧ | | = |argtypes(m)|

⇒ (<: argtypes(s)
∧ (indexes(specializers(m) = ∅ ∨ indexes(specializers(m) ≠ ∅)
∧ (∀ i ∈ indexes(specializers(m)).

(specializers(m)i = any ⇒ argtypes(s)i ≤sub argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

∧ restype(m) ≤sub restype(s))

⇔ 〈by distribution of conjunction over disjunction〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)| ∧ ≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s) ∧ | | = |argtypes(m)|

⇒ ((<: argtypes(s) ∧ indexes(specializers(m) = ∅
∧ (∀ i ∈ indexes(specializers(m)).

(specializers(m)i = any ⇒ argtypes(s)i ≤sub argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i)))

 ∨ (<: argtypes(s) ∧ indexes(specializers(m) ≠ ∅)
∧ (∀ i ∈ indexes(specializers(m)).

(specializers(m)i = any ⇒ argtypes(s)i ≤sub argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i))))

∧ restype(m) ≤sub restype(s))

c
c

c
c

c

c

c
c

c

c
c c

c

c

c
c

c
c c

c

c
c

c

42

Chambers & Leavens

⇔ 〈by conjunction distributes over universal quantification with non-empty range〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)| ∧ ≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s) ∧ | | = |argtypes(m)|

⇒ ((<: argtypes(s) ∧ indexes(specializers(m) = ∅
∧ (∀ i ∈ indexes(specializers(m)).

(specializers(m)i = any ⇒ argtypes(s)i ≤sub argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i)))

 ∨ (indexes(specializers(m) ≠ ∅)
∧ (∀ i ∈ indexes(specializers(m)).

 <: argtypes(s)
∧ (specializers(m)i = any ⇒ argtypes(s)i ≤sub argtypes(m)i))
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i))))

∧ restype(m) ≤sub restype(s))

⇔ 〈by definition of <:argtypes(s)〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)| ∧ ≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s) ∧ | | = |argtypes(m)|

⇒ ((<: argtypes(s) ∧ indexes(specializers(m) = ∅
∧ (∀ i ∈ indexes(specializers(m)).

(specializers(m)i = any ⇒ argtypes(s)i ≤sub argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i)))

 ∨ (indexes(specializers(m) ≠ ∅)
∧ (∀ i ∈ indexes(specializers(m)).

| | = |argtypes(s)| ∧ i <: argtypes(s)i
∧ (specializers(m)i = any ⇒ argtypes(s)i ≤sub argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i))))

∧ restype(m) ≤sub restype(s))

⇔ 〈by (A ∧ (B⇒ C)) ⇔ (A ∧ (B ⇒ (A ∧ C))〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)| ∧ ≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s) ∧ | | = |argtypes(m)|

⇒ ((<: argtypes(s) ∧ indexes(specializers(m) = ∅
∧ (∀ i ∈ indexes(specializers(m)).

(specializers(m)i = any ⇒ argtypes(s)i ≤sub argtypes(m)i)

c
c

c
c c

c

c

c

c

c
c

c

c
c c

c

c

c c

c

c
c

c
c c

c

43

Chambers & Leavens

∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i)))
 ∨ (indexes(specializers(m) ≠ ∅)

∧ (∀ i ∈ indexes(specializers(m)).
| | = |argtypes(s)| ∧ i <: argtypes(s)i
∧ (specializers(m)i = any

⇒ i <: argtypes(s)i ∧ argtypes(s)i ≤sub argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i))))

∧ restype(m) ≤sub restype(s))

⇒ 〈by definition of <:argtypes(s) and <:〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)| ∧ ≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s) ∧ | | = |argtypes(m)|

⇒ ((<: argtypes(s) ∧ indexes(specializers(m) = ∅
∧ (∀ i ∈ indexes(specializers(m)).

(specializers(m)i = any ⇒ argtypes(s)i ≤sub argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i)))

 ∨ (indexes(specializers(m) ≠ ∅)
∧ (∀ i ∈ indexes(specializers(m)).

 <: argtypes(s)
∧ (specializers(m)i = any ⇒ i <: argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i))))

∧ restype(m) ≤sub restype(s))

⇔ 〈by conjunction distributes over universal quantification with non-empty range〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)| ∧ ≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s) ∧ | | = |argtypes(m)|

⇒ ((<: argtypes(s) ∧ indexes(specializers(m) = ∅
∧ (∀ i ∈ indexes(specializers(m)).

(specializers(m)i = any ⇒ argtypes(s)i ≤sub argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i)))

 ∨ (<: argtypes(s) ∧ indexes(specializers(m) ≠ ∅)
∧ (∀ i ∈ indexes(specializers(m)).

 (specializers(m)i = any ⇒ i <: argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i))))

∧ restype(m) ≤sub restype(s))

c

c c

c
c

c
c

c

c
c c

c

c

c
c
c

c
c

c
c c

c

c
c

c
c

44

Chambers & Leavens

⇔ 〈by empty range rule〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)| ∧ ≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s) ∧ | | = |argtypes(m)|

⇒ ((<: argtypes(s) ∧ indexes(specializers(m) = ∅
∧ true)

 ∨ (<: argtypes(s) ∧ indexes(specializers(m) ≠ ∅)
∧ (∀ i ∈ indexes(specializers(m)).

 (specializers(m)i = any ⇒ i <: argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i))))

∧ restype(m) ≤sub restype(s))

⇔ 〈by empty range rule〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)| ∧ ≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s) ∧ | | = |argtypes(m)|

⇒ ((<: argtypes(s) ∧ indexes(specializers(m) = ∅
∧ (∀ i ∈ indexes(specializers(m)).

(specializers(m)i = any ⇒ i <: argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i)))

 ∨ (<: argtypes(s) ∧ indexes(specializers(m) ≠ ∅)
∧ (∀ i ∈ indexes(specializers(m)).

 (specializers(m)i = any ⇒ i <: argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i))))

∧ restype(m) ≤sub restype(s))

⇔ 〈by conjunction distributes over disjunction (backwards)〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)| ∧ ≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s) ∧ | | = |argtypes(m)|

⇒ (<: argtypes(s)
∧ (indexes(specializers(m) = ∅ ∨ indexes(specializers(m) ≠ ∅)
∧ (∀ i ∈ indexes(specializers(m)).

(specializers(m)i = any ⇒ i <: argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

∧ restype(m) ≤sub restype(s))

c
c

c
c c

c

c

c
c

c
c

c
c c

c

c
c

c

c
c

c
c

c
c c

c

c
c

45

Chambers & Leavens

⇔ 〈by law of excluded middle〉
∀ s ∈ S . ∀ m ∈ M. ∀ ∈ (Cconcrete)* .

msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)| ∧ ≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s) ∧ | | = |argtypes(m)|

⇒ (<: argtypes(s)
∧ (∀ i ∈ indexes(specializers(m)).

(specializers(m)i = any ⇒ i <: argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

∧ restype(m) ≤sub restype(s))

⇒ 〈by (A ⇒ B ∧ C) ⇒ (A ⇒B)〉
∀ s ∈ S. ∀ m ∈ M . ∀ ∈ (Cconcrete)* .

msg(m) = msg(s) ∧ |argtypes(s)| = |argtypes(m)| ∧ ≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M . msg(m1) = msg(s) ∧ | | = |argtypes(m1)|

 ∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s) ∧ | | = |argtypes(m)|

⇒ ((∀ i ∈ indexes(specializers(m)).
(specializers(m)i = any ⇒ i <: argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

∧ restype(m) ≤sub restype(s))

⇔ 〈by definition of≤inh for vectors, and commutivity of conjunction〉
∀ s ∈ S. ∀ m ∈ M . ∀ ∈ (Cconcrete)* .

msg(m) = msg(s) ∧ | | = |argtypes(m)| ∧ ≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M . msg(m1) = msg(s) ∧ | | = |argtypes(m1)|

 ∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ <: argtypes(s)

⇒ ((∀ i ∈ indexes(specializers(m)).
(specializers(m)i = any ⇒ i <: argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

∧ restype(m) ≤sub restype(s))

⇔ 〈by (P⇒ (Q ⇒ R)) ⇔ (P∧ Q ⇒ R), and∧ is commutative〉
∀ s ∈ S. ∀ m ∈ M . ∀ ∈ (Cconcrete)* .

<: argtypes(s)
∧ msg(m) = msg(s) ∧ | | = |argtypes(m)| ∧ ≤inh specializers(m)

⇒ ((¬ ∃ m1 ∈ M .
msg(m1) = msg(s) ∧ | | = |argtypes(m1)|
 ∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)

⇒ ((∀ i ∈ indexes(specializers(m)).
 (specializers(m)i = any

⇒ i <: argtypes(s)i ∧ argtypes(s)i ≤sub argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

∧ restype(m) ≤sub restype(s))

c
c

c
c c

c

c
c

c
c

c
c

c c

c
c

c
c c

c
c

c

c
c

c
c

c c

c
c

c
c

46

Chambers & Leavens

⇒ 〈by definition of <:〉
∀ s ∈ S. ∀ m ∈ M . ∀ ∈ (Cconcrete)* .

<: argtypes(s)
∧ msg(m) = msg(s) ∧ | | = |argtypes(m)| ∧ ≤inh specializers(m)

⇒ ((¬ ∃ m1 ∈ M .
msg(m1) = msg(s) ∧ | | = |argtypes(m1)|
 ∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)

⇒ ((∀ i ∈ indexes(specializers(m)).
 (specializers(m)i = any ⇒ i <: argtypes(m)i)
∧ (specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

∧ restype(m) ≤sub restype(s))

⇔ 〈by excluded middle〉
∀ s ∈ S. ∀ m ∈ M . ∀ ∈ (Cconcrete)* .

<: argtypes(s)
∧ msg(m) = msg(s) ∧ | | = |argtypes(m)| ∧ ≤inh specializers(m)

⇒ ((¬ ∃ m1 ∈ M .
msg(m1) = msg(s) ∧ | | = |argtypes(m1)|
 ∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)

⇒ ((∀ i ∈ indexes(specializers(m)). i <: argtypes(m)i)
∧ restype(m) ≤sub restype(s))

⇔ 〈by definition of<: for vectors〉
∀ s ∈ S. ∀ m ∈ M . ∀ ∈ (Cconcrete)* .

<: argtypes(s)
∧ msg(m) = msg(s) ∧ | | = |argtypes(m)| ∧ ≤inh specializers(m)

⇒ ((¬ ∃ m1 ∈ M .
msg(m1) = msg(s) ∧ | | = |argtypes(m1)|
 ∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)

⇒ (<: argtypes(m)
∧ restype(m) ≤sub restype(s))

⇔ 〈by predicate calculus〉
∀ s ∈ S. ∀ m ∈ M . ∀ ∈ (Cconcrete)* .

<: argtypes(s)
⇒ ((msg(m) = msg(s) ∧ | | = |argtypes(m)| ∧ ≤inh specializers(m))

⇒ ((¬ ∃ m1 ∈ M .
msg(m1) = msg(s) ∧ | | = |argtypes(m1)|
 ∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)

⇒ (<: argtypes(m)
∧ restype(m) ≤sub restype(s)))

c
c

c c

c
c

c
c

c
c

c c

c
c

c

c
c

c c

c
c

c

c
c

c c

c
c

c

47

Chambers & Leavens

⇔ 〈by interchange of quantifiers〉
∀ s ∈ S. ∀ ∈ (Cconcrete)* .

(∀ m ∈ M .
<: argtypes(s)

⇒ ((msg(m) = msg(s) ∧ | | = |argtypes(m)| ∧ ≤inh specializers(m))
⇒ ((¬ ∃ m1 ∈ M .

msg(m1) = msg(s) ∧ | | = |argtypes(m1)|
 ∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)

⇒ (<: argtypes(m)
∧ restype(m) ≤sub restype(s))))

⇔ 〈by implication distributes over universal quantification〉
∀ s ∈ S. ∀ ∈ (Cconcrete)* .

<: argtypes(s) ⇒
(∀ m ∈ M .

(msg(m) = msg(s) ∧ | | = |argtypes(m)| ∧ ≤inh specializers(m))
⇒ ((¬ ∃ m1 ∈ M .

msg(m1) = msg(s) ∧ | | = |argtypes(m1)|
 ∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)

⇒ (<: argtypes(m)
∧ restype(m) ≤sub restype(s)))

⇔ 〈by set theory and predicate logic〉
∀ s ∈ S. ∀ ∈ (Cconcrete)* .

<: argtypes(s) ⇒
∀ m ∈ { m ∈ M msg(m) = msg(s) ∧ | | = |argtypes(m)| ∧ ≤inh specializers(m) }.

(¬ ∃ m1 ∈ { m1 ∈ M
msg(m1) = msg(s) ∧ | | = |argtypes(m1)|
∧ ≤inh specializers(m1) }.

≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
⇒ (<: argtypes(m)

∧ restype(m) ≤sub restype(s))

⇔ 〈by definition ofapplicable-methods(s,)〉
∀ s ∈ S. ∀ ∈ (Cconcrete)* .

<: argtypes(s) ⇒
∀ m ∈ applicable-methods(s,).

(¬ ∃ m1 ∈ applicable-methods(s,).
≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)

⇒ (<: argtypes(m)
∧ restype(m) ≤sub restype(s))

⇔ 〈by definition〉
ImplementationIsConforming

The proof of the following lemma uses two lemmas, one for each conjunct in the definition.

Lemma 4. ComputeIsConforming ⇒ AbstractComputeIsConforming

Proof: The proof relies on Lemmas 5 and 15.

c

c
c c

c
c

c

c
c

c c

c
c

c

c
c

c c

c
c

c
c

c
c

c
c

c
c

c

48

Chambers & Leavens

ComputeIsConforming

⇔ 〈by definition〉
ComputeUnspecializedAndResultConform ∧ ComputeSpecializedAreConforming

⇒ 〈by Lemmas 5 and 15〉
UnspecializedAndResultConform ∧ SpecializersAreConforming

⇔ 〈by definition〉
AbstractComputeIsConforming

Lemma 5. ComputeUnspecializedAndResultConform ⇔ UnspecializedAndResultConform

Proof: We calculate as follows.

ComputeUnspecializedAndResultConform

⇔ 〈by definition〉
∀ m ∈ M. ∀ s ∈ relevant-sigs(m, S).

has-common-classes(m, argtypes(s)) ⇒ contra-unspec-args-co-result(m, s)

⇔ 〈by Lemma 6.〉
∀ m ∈ M. ∀ s ∈ relevant-sigs(m, S).

abs-has-common-classes(m, argtypes(s)) ⇒ contra-unspec-args-co-result(m, s)

⇔ 〈by definition〉
UnspecializedAndResultConform

Lemma 6. For allm∈ M and ∈ T*, has-common-classes(m,) ⇔ abs-has-common-classes(m,).

Proof: Let m and be given. We calculate as follows.

has-common-classes(m,)

⇔ 〈by definition〉
let TCSs = { ci ∈ top-concrete-conforming-subclasses(specializers(m)i, i)

∧ i ∈ indexes(specializers(m)) } in
∃ ∈ TCSs .

(¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|
∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)

⇔ 〈by definition of top-concrete-conforming-subclasses〉
let TCSs = { ci ∈ top-classes(concrete-conforming-subclasses(specializers(m)i, i))

∧ i ∈ indexes(specializers(m)) } in
∃ ∈ TCSs .

(¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|
∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)

⇔ 〈by definition of concrete-conforming-subclasses〉
let TCSs = { ci ∈ top-classes({ c’ ∈ Cconcrete c’ ≤inh specializers(m)i ∧ c’<: i })

∧ i ∈ indexes(specializers(m)) } in
∃ ∈ TCSs .

(¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|
∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)

t t t
t

t

c t

c

c

c t

c

c

c t

c

c

49

Chambers & Leavens

⇔ 〈by definition of TCSs〉
∃ ∈ { ci ∈ top-classes({ c’ ∈ Cconcrete c’ ≤inh specializers(m)i ∧ c’<: i })

∧ i ∈ indexes(specializers(m)) } .
(¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)

⇔ 〈by vector notation〉
∃ ∈ top-classes({ ∈ (Cconcrete)* ≤inh specializers(m) ∧ <: }).

(¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|
∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)

⇔ 〈by de Morgan〉
∃ ∈ top-classes({ ∈ (Cconcrete)* ≤inh specializers(m) ∧ <: }).

∧ (∀ m1 ∈ { m1 ∈M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|
∧ m1 ≤methm ∧ m1 ≠ m }.

¬ (≤inh specializers(m1)))

⇔ 〈by Lemma 7.〉
∃ ∈{ ∈ (Cconcrete)* ≤inh specializers(m) ∧ <: }.

∧ (∀ m1 ∈ { m1 ∈M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|
∧ m1 ≤methm ∧ m1 ≠ m }.

¬ (≤inh specializers(m1)))

⇔ 〈by de Morgan〉
∃ ∈{ ∈ (Cconcrete)* ≤inh specializers(m) ∧ <: }.

(¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|
∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)

⇔ 〈by set theory and commutivity〉
∃ ∈ { ∈ (Cconcrete)* ≤inh specializers(m)

∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|
∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m) }.

 <:

⇔ 〈by definition ofcovered-class-vecs(m)〉
∃ ∈ covered-class-vecs(m) . <:

⇔ 〈by definition〉
abs-has-common-classes(m,)

Lemma 7. Let EMSs andCs be sets of class vectors. Then

(∃ ∈ top-classes(Cs). ∀ ’’ ∈ EMSs .¬ (≤inh ’’)) ⇔ (∃ ∈Cs. ∀ ’’ ∈ EMSs .¬ (≤inh ’’))

Proof: Becausetop-classes(Cs) is a subset ofCs, the left hand side immediately implies the right. For the
converse, suppose that the right hand side is true. Let be such that∀ ’’ ∈ EMSs .¬ (≤inh ’’). Consider
a vector ’’’ such that ≤inh ’’’ and ’’’ ∈top-classes(Cs). Such a vector exists by definition oftop-
classes. We can then prove the converse as follows.

’’’ ∈top-classes(Cs)
∧ ≤inh ’’’ ∧ ∀ ’’ ∈ EMSs .¬ (≤inh ’’)

⇒ 〈by transitivity of inheritance, if for some’’ ∈ EMSs, (’’’ ≤inh ’’), then also (≤inh ’’)〉
’’’ ∈top-classes(Cs)

∧ ∀ ’’ ∈ EMSs .¬ (’’’ ≤inh ’’)

c c t

c

c c c c t

c

c c c c t

c

c c c c t

c

c c c c t

c

c c c

c
c t

c c t

t

c c c c c c c c

c c c c
c c c c

c
c c c c c

c c c c c
c

c c c

50

Chambers & Leavens

⇒ 〈by instantiation rule〉
(∃ ∈top-classes(Cs). ∀ ’’ ∈ EMSs .¬ (≤inh ’’))

The following lemmas are used in the proof of Lemma 15.

Lemma 8. Let Csbe a finite set of classes. Thentop-classes(Cs) = ∅ ⇔ Cs = ∅
Proof: We calculate as follows.

top-classes(Cs) = ∅

⇔ 〈by definition〉
{ c ∈ Cs ∀ c’ ∈ Cs. c’ ≠ c ⇒ ¬ (c ≤inh c’) }= ∅

⇔ 〈by set theory〉
¬ (∃ c ∈ Cs . (∀ c’ ∈ Cs. c’ ≠ c ⇒ ¬ (c ≤inh c’)))

⇔ 〈by de Morgan, twice and¬(A⇒B) ⇔ (A∧¬B)〉
 (∀ c ∈ Cs . (∃ c’ ∈ Cs. c’ ≠ c ∧ (c ≤inh c’)))

⇔ 〈by Cs is finite and≤inh is acyclic, so the above is false except whenCs is empty〉
Cs = ∅

Lemma 9. Let c ∈ C be a class,c1 ∈ Cconcrete be a concrete class, andt ∈ T be a type. Then

c1 ∈top-non-conforming-classes(c, t)
⇔

 c1≤inh c ∧ ¬ (c1 <: t)
∧ (∀ c’ ∈ Cconcrete. (c’ ≤inh c ∧ ¬ (c’ <: t)) ⇒ (c’ ≠ c1 ⇒ ¬ (c1 ≤inh c’))).

Proof: We brgin the proof by calculating as follows.

c1 ∈top-non-conforming-classes(c, t))

⇔ 〈by definition〉
c1 ∈top-classes({ c’ ∈ Cconcrete| c’ ≤inh c ∧ ¬ (c’ <: t) })

⇔ 〈by renamingc’ to c2〉
c1 ∈top-classes({ c2∈ Cconcrete| c2 ≤inh c ∧ ¬ (c2 <: t) })

⇔ 〈by definition oftop-classes, usingc3 for c in the definition to avoid capture〉
c1 ∈ { c3 ∈ { c2∈ Cconcrete| c2 ≤inh c ∧ ¬ (c2 <: t) }

∀ c’ ∈ { c2∈ Cconcrete| c2 ≤inh c ∧ ¬ (c2 <: t) }.
c’ ≠ c3 ⇒ ¬ (c3 ≤inh c’) }

⇔ 〈by set theory〉
c1 ∈ { c3 ∈ Cconcrete| c3 ≤inh c ∧ ¬ (c3 <: t)

∧ (∀ c’ ∈ Cconcrete.
(c’ ≤inh c ∧ ¬ (c’ <: t)) ⇒ (c’ ≠ c3 ⇒ ¬ (c3 ≤inh c’))) }

⇔ 〈by set theory〉
c1 ∈ Cconcrete∧ c1 ≤inh c ∧ ¬ (c1 <: t)
∧ (∀ c’ ∈ Cconcrete.(c’ ≤inh c ∧ ¬ (c’ <: t)) ⇒ (c’ ≠ c1 ⇒ ¬ (c1 ≤inh c’)))

⇔ 〈by the assumption thatc1 ∈ Cconcrete〉
c1 ≤inh c ∧ ¬ (c1 <: t)
∧ (∀ c’ ∈ Cconcrete. (c’ ≤inh c ∧ ¬ (c’ <: t)) ⇒ (c’ ≠ c1 ⇒ ¬ (c1 ≤inh c’)))

c c c c

51

Chambers & Leavens

Lemma 10. Let c ∈ C be a class,c1 ∈ Cconcrete be a concrete class, andt ∈ T be a type. Then

c1 ∈top-non-conforming-classes(c, t) ⇒ c1≤inh c ∧ ¬ (c1 <: t)
Proof: This follows directly from Lemma 9 by A∧ B ⇒ A.

The following lemma extends the previous lemma to provide a kind of converse to it.

Lemma 11. Let c ∈ C be a class andt ∈ T be a type. Then

 (∃ c1∈ Cconcrete . c1 ≤inh c ∧ ¬ (c1 <: t))
 ⇔

 (∃ c1∈ Cconcrete . c1 ∈top-non-conforming-classes(c, t))
Proof: We proceed by mutual implication.

(∃ c1∈ Cconcrete . c1 ∈top-non-conforming-classes(c, t))

⇒ 〈by Lemma 10〉
(∃ c1∈ Cconcrete . c1 ≤inh c ∧ ¬ (c1 <: t))

The converse is shown as follows.

(∃ c1∈ Cconcrete . c1 ≤inh c ∧ ¬ (c1 <: t))

⇒ 〈by the finiteness ofCconcrete and the acyclic nature of≤inh, there are maximal suchc1〉
(∃ c1∈ Cconcrete . c1 ≤inh c ∧ ¬ (c1 <: t)

∧ (∀ c’ ∈ Cconcrete.
(c’ ≤inh c ∧ ¬ (c’ <: t)) ⇒ (c’ ≠ c1 ⇒ ¬ (c1 ≤inh c’))))

⇔ 〈by Lemma 9〉
(∃ c1∈ Cconcrete . c1 ∈top-non-conforming-classes(c, t))

This completes the proof.

The following lemma can be proved as a corrollary to Lemma 11, but we give a direct proof below.

Lemma 12. Let c ∈ C be a class andt ∈ T be a type. Then

top-non-conforming-classes(c, t) = ∅ ⇔ (∀ c’ ∈ Cconcrete. c’ ≤inh c ⇒ c’ <: t)
Proof: We calculate as follows.

top-non-conforming-classes(c, t) = ∅

⇔ 〈by definition〉
top-classes({ c’ ∈ Cconcrete| c’ ≤inh c ∧ ¬ (c’ <: t) }) = ∅

⇔ 〈by Lemma 8.〉
{ c’ ∈ Cconcrete| c’ ≤inh c ∧ ¬ (c’ <: t) } = ∅

⇔ 〈by set theory〉
(∀ c’ ∈ Cconcrete. ¬ (c’ ≤inh c ∧ ¬ (c’ <: t))

⇔ 〈by ¬(A⇒B) ⇔ (A∧¬B) and double negation〉
(∀ c’ ∈ Cconcrete. c’ ≤inh c ⇒ c’ <: t)

We now move from lemmas about individual classes to lemmas about class vectors.

52

Chambers & Leavens

Lemma 13. Let EMSs be a set of class vectors. Let∈ C* be a class vector, and let ∈ T* be a type vector.
Suppose that | | = | |. Then

(∃ ∈C* .
∈ (Cconcrete)* ∧ ≠ ∧ ≤inh

∧ (∃ i ∈ indexes() . i ≠ any ∧ ¬ (i <: i)
∧ (∀ ’’ ∈ EMSs . ¬ (≤inh ’’))

⇒
(∃ ∈C* .

∈ top-non-conforming-class-vecs(,)
∧ (∀ ’’ ∈ EMSs .¬ (≤inh ’’))

Proof: We calculate as follows.

(∃ ∈C* .
∈ (Cconcrete)* ∧ ≠ ∧ ≤inh

∧ (∃ i ∈ indexes() . i ≠ any ∧ ¬ (i <: i)
∧ (∀ ’’ ∈ EMSs . ¬ (≤inh ’’))

⇒ 〈by A ∧ B ⇒ A and alternate notation for vector elements(ci = i)〉
(∃ ∈C* .

 ≠ ∧ ≤inh
∧ (∃ i ∈ indexes() . ci ≠ any ∧ ¬ (i <: i)
∧ (∀ ’’ ∈ EMSs . ¬ (≤inh ’’))

⇒ 〈by reflexivity of inheritance, can choosei for positions whereci = any to beci〉
(∃ ∈C* .

 ≠ ∧ ≤inh
∧ (∀ i ∈ indexes().

(ci = any ⇒ i = ci))
∧ (∃ i ∈ indexes() . ci ≠ any ∧ ¬ (i <: i)
∧ (∀ ’’ ∈ EMSs . ¬ (≤inh ’’))

⇒ 〈by reflexivity of inheritance, can choosei for positions whereci ≠ any to beci when there is no
non-conforming concrete subclass, and to be a non-conforming concrete subclass otherwise〉

(∃ ∈C* .
 ≠ ∧ ≤inh

∧ (∀ i ∈ indexes().
(ci = any ⇒ i = ci)
∧ (ci ≠ any

⇒ (((∀ c’’ ∈ Cconcrete. c’’ ≤inh ci ⇒ c’’ <: t i) ⇒ i = ci)
∧ ((∃ c’’ ∈ Cconcrete . c’’ ≤inh ci ∧ ¬ (c’’ <: t i))

⇒ (i ≤inh ci ∧ ¬ (i <: t i))))))
∧ (∃ i ∈ indexes() . ci ≠ any ∧ ¬ (i <: i)
∧ (∀ ’’ ∈ EMSs . ¬ (≤inh ’’))

c t
c t

d

d d c d c
c c d t

c d c

d

d c t
c d c

d

d d c d c
c c d t

c d c

c
d

d c d c
c d t

c d c

d

d

d c d c
c
d

c d t
c d c

d

d

d c d c
c
d

d

d d

c d t
c d c

53

Chambers & Leavens

⇒ 〈by A ∧ B ⇒ A 〉
(∃ ∈C* .

≠ ∧ ≤inh
∧ (∀ i ∈ indexes().

(ci = any ⇒ i = ci)
∧ (ci ≠ any

⇒ (((∀ c’’ ∈ Cconcrete. c’’ ≤inh ci ⇒ c’’ <: t i) ⇒ i = ci)
∧ ((∃ c’’ ∈ Cconcrete . c’’ ≤inh ci ∧ ¬ (c’’ <: t i))

⇒ (i ≤inh ci ∧ ¬ (i <: t i))))))
∧ (∀ ’’ ∈ EMSs .¬ (≤inh ’’))

⇔ 〈by definition of inheritance for vectors〉
(∃ ∈C* .

≠
∧ | | = | |
∧ (∀ i ∈ indexes(). i ≤inh ci)
∧ (∀ i ∈ indexes().

(ci = any ⇒ i = ci)
∧ (ci ≠ any

⇒ (((∀ c’’ ∈ Cconcrete. c’’ ≤inh ci ⇒ c’’ <: t i) ⇒ i = ci)
∧ ((∃ c’’ ∈ Cconcrete . c’’ ≤inh ci ∧ ¬ (c’’ <: t i))

⇒ (i ≤inh ci ∧ ¬ (i <: t i))))))
∧ (∀ ’’ ∈ EMSs .¬ (≤inh ’’))

⇔ 〈by joining the term〉
(∃ ∈C* .

≠
∧ | | = | |
∧ (∀ i ∈ indexes().

i ≤inh ci
∧ (ci = any ⇒ i = ci)
∧ (ci ≠ any

⇒ (((∀ c’’ ∈ Cconcrete. c’’ ≤inh ci ⇒ c’’ <: t i) ⇒ i = ci)
∧ ((∃ c’’ ∈ Cconcrete . c’’ ≤inh ci ∧ ¬ (c’’ <: t i))

⇒ (i ≤inh ci ∧ ¬ (i <: t i))))))
∧ (∀ ’’ ∈ EMSs .¬ (≤inh ’’))

⇔ 〈by conjunction distributes over conjunction and implication (twice)〉
(∃ ∈C* .

≠
∧ | | = | |
∧ (∀ i ∈ indexes().

(ci = any ⇒ i = ci ∧ i ≤inh ci)
∧ (ci ≠ any

⇒ (((∀ c’’ ∈ Cconcrete. c’’ ≤inh ci ⇒ c’’ <: t i) ⇒ i = ci ∧ i ≤inh ci)
∧ ((∃ c’’ ∈ Cconcrete . c’’ ≤inh ci ∧ ¬ (c’’ <: t i))

⇒ (i ≤inh ci ∧ ¬ (i <: t i))))))
∧ (∀ ’’ ∈ EMSs .¬ (≤inh ’’))

d

d c d c
c
d

d

d d

c d c

d

d c
d c

c d

c
d

d

d d

c d c

d

d c
d c

c
d

d

d

d d

c d c

d

d c
d c

c
d d

d d

d d

c d c

54

Chambers & Leavens

⇔ 〈by inheritance is reflexive〉
(∃ ∈C* .

≠
∧ | | = | |
∧ (∀ i ∈ indexes().

(ci = any ⇒ i = ci)
∧ (ci ≠ any

⇒ (((∀ c’’ ∈ Cconcrete. c’’ ≤inh ci ⇒ c’’ <: t i) ⇒ i = ci)
∧ ((∃ c’’ ∈ Cconcrete . c’’ ≤inh ci ∧ ¬ (c’’ <: t i))

⇒ (i ≤inh ci ∧ ¬ (i <: t i))))))
∧ (∀ ’’ ∈ EMSs .¬ (≤inh ’’))

⇒ 〈by the finiteness ofC, and the acyclic nature of≤inh, there are maximal such vectors〉
(∃ ∈C* .

≠
∧ | | = | |
∧ (∀ i ∈ indexes().

(ci = any ⇒ i = ci)
∧ (ci ≠ any

⇒ (((∀ c’’ ∈ Cconcrete. c’’ ≤inh ci ⇒ c’’ <: t i) ⇒ i = ci)
∧ ((∃ c’’ ∈ Cconcrete . c’’ ≤inh ci ∧ ¬ (c’’ <: t i))

⇒ (i ≤inh ci ∧ ¬ (i <: t i)
∧ (∀ c’ ∈ Cconcrete. (c’ ≤inh ci ∧ ¬ (c’ <: t i))

⇒ (c’ ≠ i ⇒ ¬ (i ≤inh c’))))))))
∧ (∀ ’’ ∈ EMSs .¬ (≤inh ’’))

⇔ 〈by Lemmas 11, 12, and 9〉
(∃ ∈C* .

≠
∧ | | = | |
∧ (∀ i ∈ indexes().

(ci = any ⇒ i = ci)
∧ (ci ≠ any

⇒ ((top-non-conforming-classes(ci, ti) = ∅ ⇒ i = ci)
∧ (top-non-conforming-classes(ci, ti) ≠ ∅

⇒ i ∈ top-non-conforming-classes(ci, ti))))
∧ (∀ ’’ ∈ EMSs .¬ (≤inh ’’))

d

d c
d c

c
d

d

d d

c d c

d

d

d c
d c

c
d

d

d d

d d

c d c

d

d c
d c

c
d

d

d

c d c

55

Chambers & Leavens

⇔ 〈by conjunction is commutative andlet-abstraction and the range of the existential quantifier〉
(∃ ∈C* .

∈ C*
∧ | | = | |
∧ (∀ i ∈ indexes().

(ci = any ⇒ i = ci)
∧ (ci ≠ any ⇒

let Cs = top-non-conforming-classes(ci, ti) in
(Cs = ∅ ⇒ i = ci)
∧ (Cs≠ ∅ ⇒ i ∈ Cs)))

∧ ≠
∧ (∀ ’’ ∈ EMSs .¬ (≤inh ’’))

⇔ 〈by set theory〉
(∃ ∈C* .

∈({ ’ ∈ C* | | ’ | = | |
∧ (∀ i ∈ indexes().

(ci = any ⇒ ci’ = ci)
∧ (ci ≠ any ⇒

let Cs = top-non-conforming-classes(ci, ti) in
(Cs = ∅ ⇒ ci’ = ci)
∧ (Cs≠ ∅ ⇒ ci’ ∈ Cs))) } − { })

∧ (∀ ’’ ∈ EMSs .¬ (≤inh ’’))

⇔ 〈by definition〉
(∃ ∈C* .

∈ top-non-conforming-class-vecs(,)
∧ (∀ ’’ ∈ EMSs .¬ (≤inh ’’))

Lemma 14. Let m ∈ M be a method. Then

top-non-overridden-non-conforming-class-vecs(m) = ∅
⇒ (∀ ∈ covered-class-vecs(m) .

 ≠ specializers(m)
⇒ (∀ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ⇒ i <: argtypes(m)i))
Proof: We prove the contrapositive by calculating as follows.

¬ (∀ ∈ covered-class-vecs(m) .
 ≠ specializers(m)

⇒ (∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

⇔ 〈by de Morgan and¬(A ⇒B) ⇔ (A ∧¬ B)〉
 (∃ ∈ covered-class-vecs(m) .

 ≠ specializers(m)
∧¬ (∀ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

d

d

d c
c
d

d

d

d c
c d c

d

d c c c
c

c
c d c

d

d c t
c d c

c
c

c

c
c

c

c
c

c

56

Chambers & Leavens

⇔ 〈by de Morgan and¬(A ⇒B) ⇔ (A ∧¬ B)〉
 (∃ ∈ covered-class-vecs(m) .

 ≠ specializers(m)
∧ (∃ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ∧ ¬ (i <: argtypes(m)i)))

⇔ 〈by definition〉
 (∃ ∈ { ∈ (Cconcrete)* ≤inh specializers(m)

∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|
∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m) } .

 ≠ specializers(m)
∧ (∃ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ∧ ¬ (i <: argtypes(m)i)))

⇔ 〈by set theory〉
 (∃ ∈ (Cconcrete)* .

≤inh specializers(m)
∧ (¬ ∃ m1 ∈ M. msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ ≤inh specializers(m1) ∧ m1 ≤methm ∧ m1 ≠ m)
∧ ≠ specializers(m)
∧ (∃ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ∧ ¬ (i <: argtypes(m)i)))

⇔ 〈by commutivity of conjunction〉
 (∃ ∈ (Cconcrete)* .

 ≠ specializers(m)
∧ ≤inh specializers(m)
∧ (∃ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ∧ ¬ (i <: argtypes(m)i)))
∧ (¬ ∃ m1 ∈ M.

msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)| ∧ m1 ≤methm ∧ m1 ≠ m
∧ ≤inh specializers(m1))

⇔ 〈by (Cconcrete)* ⊂ C* and range rule〉
 (∃ ∈ C* .

∈ (Cconcrete)*
∧ ≠ specializers(m)
∧ ≤inh specializers(m)
∧ (∃ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ∧ ¬ (i <: argtypes(m)i)))
∧ (¬ ∃ m1 ∈ M.

msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)| ∧ m1 ≤methm ∧ m1 ≠ m
∧ ≤inh specializers(m1))

c
c

c

c c c

c
c

c

c
c

c
c

c

c
c

c

c

c

c
c

c
c

c

c

57

Chambers & Leavens

⇔ 〈by set theory and de Morgan〉
 (∃ ∈ C* .

∈ (Cconcrete)*
∧ ≠ specializers(m)
∧ ≤inh specializers(m)
∧ (∃ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ∧ ¬ (i <: argtypes(m)i)))
∧ (∀ m1 ∈ {m1 ∈M | msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ m1 ≤methm ∧ m1 ≠ m } .
¬ (≤inh specializers(m1)))

⇒ 〈by Lemma 13〉
(∃ ∈C* .

∈ top-non-conforming-class-vecs(specializers(m), argtypes(m))
∧ (∀ m1 ∈ {m1 ∈M | msg(m1) = msg(m) ∧ |argtypes(m1)| = |argtypes(m)|

∧ m1 ≤methm ∧ m1 ≠ m } .
¬ (≤inh specializers(m1)))

⇔ 〈by set theory and de Morgan〉
(∃ ∈C* .

∈ top-non-conforming-class-vecs(specializers(m), argtypes(m))
∧ (¬ ∃ m’ ∈ M.

msg(m’) = msg(m) ∧ |argtypes(m’)| = |argtypes(m)| ∧ m’ ≤methm ∧ m’ ≠ m
∧ ≤inh specializers(m’)))

⇔ 〈by set theory〉
{ ∈ top-non-conforming-class-vecs(specializers(m), argtypes(m)) |

¬ ∃ m’ ∈ M.
msg(m’) = msg(m) ∧ |argtypes(m’)| = |argtypes(m)| ∧ m’ ≤methm ∧ m’ ≠ m
∧ ≤inh specializers(m’) } ≠ ∅

⇔ 〈by definition〉
top-non-overridden-non-conforming-class-vecs(m) ≠ ∅

We now turn to the second main lemma of this section.

Lemma 15. ComputeSpecializedAreConforming ⇒ SpecializersAreConforming

Proof: We calculate as follows.

ComputeSpecializedAreConforming

⇔ 〈by definition〉
∀ m ∈ M.

(∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ specializers(m)i <: argtypes(m)i)

∧ top-non-overridden-non-conforming-class-vecs(m) = ∅

c
c

c
c

c

c

c
c

c

c
c

c

c

c

58

Chambers & Leavens

⇒ 〈by Lemma 14〉
∀ m ∈ M.

(∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ specializers(m)i <: argtypes(m)i)

∧ (∀ ∈ covered-class-vecs(m) .
 ≠ specializers(m)

⇒ (∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

⇔ 〈by the law of excluded middle〉
∀ m ∈ M.

(∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ specializers(m)i <: argtypes(m)i)

∧ (covered-class-vecs(m) = ∅ ∨ covered-class-vecs(m) ≠ ∅)
∧ (∀ ∈ covered-class-vecs(m) .

 ≠ specializers(m)
⇒ (∀ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

⇔ 〈by distribution of conjunction over disjunction〉
∀ m ∈ M.

(covered-class-vecs(m) = ∅
∧ (∀ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ⇒ specializers(m)i <: argtypes(m)i)
∧ (∀ ∈ covered-class-vecs(m) .

 ≠ specializers(m)
⇒ (∀ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ⇒ i <: argtypes(m)i)))
∨ (covered-class-vecs(m) ≠ ∅

∧ (∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ specializers(m)i <: argtypes(m)i)

∧ (∀ ∈ covered-class-vecs(m) .
 ≠ specializers(m)

⇒ (∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i)))

⇔ 〈by empty range rule and distribution of conjunction over universal with nonempty range〉
∀ m ∈ M.

(covered-class-vecs(m) = ∅
∧ (∀ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ⇒ specializers(m)i <: argtypes(m)i)
∧ true)

∨ (covered-class-vecs(m) ≠ ∅
∧ (∀ ∈ covered-class-vecs(m) .

(∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ specializers(m)i <: argtypes(m)i)

∧ (≠ specializers(m)
⇒ (∀ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ⇒ i <: argtypes(m)i))))

c
c

c

c
c

c

c
c

c

c
c

c

c

c

c

59

Chambers & Leavens

⇔ 〈by empty range rule and definition of implication〉
∀ m ∈ M.

(covered-class-vecs(m) = ∅
∧ (∀ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ⇒ specializers(m)i <: argtypes(m)i)
∧ (∀ ∈ covered-class-vecs(m) .

∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

∨ (covered-class-vecs(m) ≠ ∅
∧ (∀ ∈ covered-class-vecs(m) .

(∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ specializers(m)i <: argtypes(m)i)

∧ (= specializers(m)
∨ (∀ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ⇒ i <: argtypes(m)i))))

⇒ 〈by A ∧ B ⇒ A〉
∀ m ∈ M.

(covered-class-vecs(m) = ∅
∧ (∀ ∈ covered-class-vecs(m) .

∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

∨ (covered-class-vecs(m) ≠ ∅
∧ (∀ ∈ covered-class-vecs(m) .

(∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ specializers(m)i <: argtypes(m)i)

∧ (= specializers(m)
∨ (∀ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ⇒ i <: argtypes(m)i))))

⇔ 〈by distribution of conjunction over disjunction〉
∀ m ∈ M.

(covered-class-vecs(m) = ∅
∧ (∀ ∈ covered-class-vecs(m) .

∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

∨ (covered-class-vecs(m) ≠ ∅
∧ (∀ ∈ covered-class-vecs(m) .

((∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ specializers(m)i <: argtypes(m)i)

∧ = specializers(m))
∨ ((∀ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ⇒ specializers(m)i <: argtypes(m)i)
∧ (∀ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ⇒ i <: argtypes(m)i))))

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

60

Chambers & Leavens

⇒ 〈by A ∧ B ⇒ A〉
∀ m ∈ M.

(covered-class-vecs(m) = ∅
∧ (∀ ∈ covered-class-vecs(m) .

∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

∨ (covered-class-vecs(m) ≠ ∅
∧ (∀ ∈ covered-class-vecs(m) .

((∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ specializers(m)i <: argtypes(m)i)

∧ = specializers(m))
∨ (∀ i ∈ indexes(specializers(m)).

specializers(m)i ≠ any ⇒ i <: argtypes(m)i))))

⇔ 〈by defintion of equality for vectors〉
∀ m ∈ M.

(covered-class-vecs(m) = ∅
∧ (∀ ∈ covered-class-vecs(m) .

∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

∨ (covered-class-vecs(m) ≠ ∅
∧ (∀ ∈ covered-class-vecs(m) .

((∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ specializers(m)i <: argtypes(m)i)

∧ (∀ i ∈ indexes(specializers(m)).
i = specializers(m)i))

∨ (∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i))))

⇔ 〈by joining the term〉
∀ m ∈ M.

(covered-class-vecs(m) = ∅
∧ (∀ ∈ covered-class-vecs(m) .

∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

∨ (covered-class-vecs(m) ≠ ∅
∧ (∀ ∈ covered-class-vecs(m) .

(∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ specializers(m)i <: argtypes(m)i
∧ i = specializers(m)i)

∨ (∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i))))

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

61

Chambers & Leavens

⇒ 〈by substituting i for specializers(m)i〉
∀ m ∈ M.

(covered-class-vecs(m) = ∅
∧ (∀ ∈ covered-class-vecs(m) .

∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

∨ (covered-class-vecs(m) ≠ ∅
∧ (∀ ∈ covered-class-vecs(m) .

(∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i)

∨ (∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i))))

⇔ 〈by idempotence of disjunction〉
∀ m ∈ M.

(covered-class-vecs(m) = ∅
∧ (∀ ∈ covered-class-vecs(m) .

∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i))

∨ (covered-class-vecs(m) ≠ ∅
∧ (∀ ∈ covered-class-vecs(m) .

(∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i)))

⇔ 〈by distribution of conjunction over disjunction〉
∀ m ∈ M.

(covered-class-vecs(m) = ∅ ∨ covered-class-vecs(m) ≠ ∅)
∧ (∀ ∈ covered-class-vecs(m) .

∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i)

⇔ 〈by the law of the excluded middle and true is the unit of conjunction〉
∀ m ∈ M. ∀ ∈ covered-class-vecs(m) .

∀ i ∈ indexes(specializers(m)).
specializers(m)i ≠ any ⇒ i <: argtypes(m)i

⇔ 〈by definition〉
SpecializersAreConforming

A.3 Correctness of Completeness Checking Algorithm

We use the following simple lemma in the proofs of completeness checking.

Lemma 16. Let s ∈ S and ∈C*.

(<: argtypes(s) ⇒
∃ m ∈ relevant(M, s). ≤inh specializers(m))

⇔
(<: argtypes(s) ⇒

∃ m ∈ applicable-methods(s,))
Proof:

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c

c
c

c
c

62

Chambers & Leavens

<: argtypes(s) ⇒
∃ m ∈ relevant(M, s). ≤inh specializers(m)

⇔ 〈by definition ofrelevant〉
<: argtypes(s) ⇒

∃ m ∈ { m ∈ M msg(m) = msg(s) ∧ |argtypes(m)| = |argtypes(s)| }.
≤inh specializers(m)

⇔ 〈by set theory〉
<: argtypes(s) ⇒

∃ m ∈ { m ∈ M
msg(m) = msg(s) ∧ |argtypes(m)| = |argtypes(s)| ∧ ≤inh specializers(m) }

⇔ 〈by definition of<: which is true only of equal-length vectors〉
<: argtypes(s) ⇒

∃ m ∈ { m ∈ M
msg(m) = msg(s) ∧ |argtypes(m)| = | | ∧ ≤inh specializers(m) }

⇔ 〈by definition ofapplicable-methods〉
<: argtypes(s) ⇒

∃ m ∈ applicable-methods(s,)

The proof of the following lemma, which is used in the proof of conformance checking, is identical to the
proof of Lemma 16.

Lemma 17. Let s ∈ S and ∈C*.

(<: argtypes(s) ⇒
¬∃ m ∈ relevant(M, s). ≤inh specializers(m))

⇔
(<: argtypes(s) ⇒

¬∃ m ∈ applicable-methods(s,))

The following theorem says that our algorithm for computing completeness is sufficient to ensure
completeness. Note that the proof also shows the converse.

Theorem 3.ComputeIsComplete ⇒ ImplementationIsComplete

Proof: We prove this theorem by the following calculation.

ComputeIsComplete

⇔ 〈by definition〉
∀ s ∈ S.

let any-vector = { } where = argtypes(s) and each ci = any in
IsComplete(relevant(M, s), any-vector, s)

⇔ 〈by definition ofIsComplete(relevant(M, s), any-vector, s)〉
∀ s ∈ S.

let any-vector = { } where = argtypes(s) and each ci = any in
∀ ∈ any-vector.

let TCSs = { ’ ci’ ∈ top-concrete-conforming-subclasses(ci, argtypes(s)i) } in
∀ ’ ∈ TCSs. ∃ m ∈ relevant(M, s). ’ ≤inh specializers(m)

c
c

c

c

c

c

c

c c

c
c

c

c
c

c
c

c c

c c
c

c
c c

63

Chambers & Leavens

⇔ 〈by definition ofany-vector, there is only one inany-vector and each element of isany〉
∀ s ∈ S.

let TCSs = { ’ ci’ ∈ top-concrete-conforming-subclasses(any, argtypes(s)i) } in
∀ ’ ∈ TCSs. ∃ m ∈ relevant(M, s). ’ ≤inh specializers(m)

⇔ 〈by definition oftop-concrete-conforming-subclasses(any, argtypes(s)i)〉
∀ s ∈ S.

let TCSs = { ’ ci’ ∈ top-classes(concrete-conforming-subclasses(any, argtypes(s)i)) }
in

∀ ’ ∈ TCSs. ∃ m ∈ relevant(M, s). ’ ≤inh specializers(m)

⇔ 〈by definition ofconcrete-conforming-subclasses(any, argtypes(s)i)〉
∀ s ∈ S.

let TCSs = { ’ ci’ ∈ top-classes({ c’ ∈ Cconcrete c’ ≤inh any∧ c’<: argtypes(s)i }) } in
∀ ’ ∈ TCSs. ∃ m ∈ relevant(M, s). ’ ≤inh specializers(m)

⇔ 〈by definition ofany, every classc’ is such thatc’ ≤inh any〉
∀ s ∈ S.

let TCSs = { ’ ci’ ∈ top-classes({ c’ ∈ Cconcrete c’<: argtypes(s)i }) } in
∀ ’ ∈ TCSs. ∃ m ∈ relevant(M, s). ’ ≤inh specializers(m)

⇔ 〈by the definition ofTCSs in thelet〉
∀ s ∈ S.

∀ ’ ∈{ ’ ci’ ∈ top-classes({ c’ ∈ Cconcrete c’ <: argtypes(s)i }) }.
∃ m ∈ relevant(M, s). ’ ≤inh specializers(m)

⇔ 〈by definition oftop-classes and<: for vectors〉
∀ s ∈ S.

∀ ’ ∈top-classes({ ’ ∈ (Cconcrete)* ’ <: argtypes(s) }).
∃ m ∈ relevant(M, s). ’ ≤inh specializers(m)

⇔ 〈by definition oftop-classes and≤inh〉
∀ s ∈ S.

∀ ’ ∈{ ’ ∈ (Cconcrete)* ’ <: argtypes(s) }.
∃ m ∈ relevant(M, s). ’ ≤inh specializers(m)

⇔ 〈by set theory〉
∀ s ∈ S. ∀ ’ ∈(Cconcrete)*.

’ <: argtypes(s) ⇒
∃ m ∈ relevant(M, s). ’ ≤inh specializers(m)

⇔ 〈by lemma 16〉
∀ s ∈ S. ∀ ’ ∈(Cconcrete)*.

’ <: argtypes(s) ⇒
∃ m ∈ applicable-methods(s, ’)

⇔ 〈by set theory〉
∀ s ∈ S. ∀ ’ ∈(Cconcrete)*.

’ <: argtypes(s) ⇒
|applicable-methods(s, ’)| > 0

c c

c
c c

c

c c

c
c c

c
c c

c c
c

c c c
c

c c c
c

c
c

c

c
c

c

c
c

c

64

Chambers & Leavens

⇔ 〈by definition, renaming ’ to 〉
ImplementationIsComplete

A.4 Correctness of Consistency Checking Algorithm

Theorem 4.ComputeIsConsistent ⇒ ImplementationIsConsistent

Proof: We prove this theorem by the following calculation.

ComputeIsConsistent

⇔ 〈by definition〉
∀ s ∈ S. IsConsistent(relevant(M, s), s)

⇔ 〈by definition ofIsConsistent(relevant(M, s), s)〉
∀ s ∈ S. ∀ (m1, m2) ∈ incomparable-pairs(relevant(M, s)).

let TLBs = tlb(specializers(m1), specializers(m2), s),
M-reduced = { m ∈ relevant(M, s) m ≤methm1 ∧ m ≤methm2 } in

IsComplete(M-reduced, TLBs, s)

⇔ 〈by definition ofincomparable-pairs(relevant(M, s))〉
∀ s ∈ S. ∀m1, m2 ∈ relevant(M, s). ¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒

let TLBs = tlb(specializers(m1), specializers(m2), s),
M-reduced = { m ∈ relevant(M, s) m ≤methm1 ∧ m ≤methm2 } in

IsComplete(M-reduced, TLBs, s)

⇔ 〈by definition ofIsComplete(M-reduced, TLBs, s)〉
∀ s ∈ S. ∀m1, m2 ∈ relevant(M, s). ¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒

let TLBs = tlb(specializers(m1), specializers(m2), s),
M-reduced = { m ∈ relevant(M, s) m ≤methm1 ∧ m ≤methm2 } in
∀ ∈ TLBs.

let TCSs = { ’ ci’ ∈ top-concrete-conforming-subclasses(ci, argtypes(s)i) } in
∀ ’ ∈ TCSs. ∃ m ∈ M-reduced. ’ ≤inh specializers(m)

⇔ 〈by definition ofM-reduced and set theory〉
∀ s ∈ S. ∀m1, m2 ∈ relevant(M, s). ¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒

let TLBs = tlb(specializers(m1), specializers(m2), s) in
∀ ∈ TLBs.

let TCSs = { ’ ci’ ∈ top-concrete-conforming-subclasses(ci, argtypes(s)i) } in
∀ ’ ∈ TCSs. ∃ m ∈ relevant(M, s).

’ ≤inh specializers(m) ∧ m≤methm1 ∧ m ≤methm2

⇒ 〈by definition of TLBs, TCSs, and inheritance〉
∀ s ∈ S. ∀m1, m2 ∈ relevant(M, s). ¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒

∀ ∈(Cconcrete)*.
<: argtypes(s) ∧ ≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒

∃ m ∈ relevant(M, s). ’ ≤inh specializers(m) ∧ m≤methm1 ∧ m ≤methm2

c c

c
c

c c

c
c

c
c

c
c c c

c

65

Chambers & Leavens

⇔ 〈by logic, as does not occur in∀m1, m2 ∈ relevant(M, s). (¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1))〉
∀ s ∈ S. ∀ ∈(Cconcrete)* .

 ∀m1, m2 ∈ relevant(M, s).
¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒

<: argtypes(s) ∧ ≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒
∃ m ∈ relevant(M, s). ’ ≤inh specializers(m) ∧ m≤methm1 ∧ m ≤methm2

⇔ 〈by definition of⇒, twice, and predicate calculus〉
∀ s ∈ S. ∀ ∈(Cconcrete)* .

 ∀m1, m2 ∈ relevant(M, s).
¬(¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1)) ∨
¬(<: argtypes(s)) ∨ ¬(≤inh specializers(m1) ∧ ≤inh specializers(m2)) ∨
∃ m ∈ relevant(M, s). ’ ≤inh specializers(m) ∧ m≤methm1 ∧ m ≤methm2

⇔ 〈by associativity of∨〉
∀ s ∈ S. ∀ ∈(Cconcrete)* .

 ∀m1, m2 ∈ relevant(M, s).
¬(<: argtypes(s)) ∨
¬(¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1)) ∨
¬(≤inh specializers(m1) ∧ ≤inh specializers(m2)) ∨
∃ m ∈ relevant(M, s). ’ ≤inh specializers(m) ∧ m≤methm1 ∧ m ≤methm2

⇔ 〈by definition of⇒, three times〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

∀ m1, m2 ∈ relevant(M, s).
<: argtypes(s) ⇒

¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒
≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒

∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2

⇔ 〈by logic, asm1, m2 do not occur in <: argtypes(s)〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∀ m1, m2 ∈ relevant(M, s).

¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒
≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒

∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2

⇔ 〈by predicate calculus〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∀ m1, m2 ∈ relevant(M, s).

(¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒
≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒

∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2)
∧ true ∧ true

c
c

c c c
c

c

c c c
c

c

c

c c
c

c

c

c c
c

c
c

c

c c
c

c
c

c c
c

66

Chambers & Leavens

⇔ 〈by reflexivity of≤meth and predicate calculus〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∀ m1, m2 ∈ relevant(M, s).

(¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒
≤inh specializers(m1)) ∧ ≤inh specializers(m2) ⇒

∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2)
∧ (m1 ≤methm2 ⇒

≤inh specializers(m1) ⇒
≤inh specializers(m1) ∧ m1 ≤methm1 ∧ m1 ≤methm2)

∧ (m2 ≤methm1 ⇒
≤inh specializers(m2) ⇒

≤inh specializers(m2) ∧ m2 ≤methm2 ∧ m2 ≤methm1)

⇒ 〈by existentially quantifying overm1 in one clause andm2 in another clause〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∀ m1, m2 ∈ relevant(M, s).

(¬(m1 ≤methm2) ∧ ¬(m2 ≤methm1) ⇒
≤inh specializers(m1)) ∧ ≤inh specializers(m2) ⇒

∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2)
∧ (m1 ≤methm2 ⇒

≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒
∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2)

∧ (m2 ≤methm1 ⇒
≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒

∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm2 ∧ m ≤methm1)

⇔ 〈by ((P⇒R) ∧ (Q⇒R)) ⇔ ((P ∨ Q) ⇒ R) and predicate calculus〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∀ m1, m2 ∈ relevant(M, s).

(¬(m1 ≤methm2 ∨ m2 ≤methm1) ⇒
≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒

∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2)
∧ (m1 ≤methm2 ∨ m2 ≤methm1 ⇒

≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒
∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2)

⇔ 〈by the law of the excluded middle〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∀ m1, m2 ∈ relevant(M, s).

≤inh specializers(m1) ∧ ≤inh specializers(m2) ⇒
∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2

c
c

c c
c

c
c

c
c

c
c

c c
c

c c
c

c c
c

c
c

c c
c

c c
c

c
c

c c
c

67

Chambers & Leavens

⇔ 〈by definition of⇒〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∀ m1, m2 ∈ applicable-methods(s,).

¬ (≤inh specializers(m1) ∧ ≤inh specializers(m2)) ∨
(∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2)

⇔ 〈by ∀x.P(x) ⇔ ¬∃x.¬P(x) and predicate calculus〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
¬ ∃ m1, m2 ∈ relevant(M, s).

≤inh specializers(m1) ∧ ≤inh specializers(m2) ∧
¬ (∃ m ∈ relevant(M, s). ≤inh specializers(m) ∧ m ≤methm1 ∧ m ≤methm2)

⇔ 〈by lemma 17, three times〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
¬ ∃ m1, m2 ∈ applicable-methods(s,).

¬ (∃ m ∈ applicable-methods(s,). m ≤methm1 ∧ m ≤methm2)

⇔ 〈by ¬∃x.¬P(x) ⇔ ∀x.P(x)〉
∀ s ∈ S. ∀ ∈(Cconcrete)*.

<: argtypes(s) ⇒
∀ m1, m2 ∈ applicable-methods(s,).

∃ m ∈ applicable-methods(s,). m ≤methm1 ∧ m ≤methm2

⇔ 〈by definition〉
ImplementationIsConsistent

c
c

c
c c

c

c
c

c c
c

c
c

c
c

c
c

c
c

