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1 Context

Digital libraries offer access to a large collection of documents represented in electronic format. According
to Bruce Schatz [Sch97]:

A digital library enables users to interact effectively with information distributed across a net-
work. These network information systems support search and display of items from organized
collections.

An increasing number of users discover online information retrieval and interactive searches. Once
comfortable with the new tools, they demand new materials to be available in digital libraries. This requires
obtaining digital representations of documents. Since the process is getting cheaper and faster, extending a
digital library is not a difficult task.

Obviously, this increase in the amount of information has a strong impact on the supporting software.
Consider for example the case of searching—text scanning. This is a simple but basic operation for any
digital library. Algorithms for full text scanning include regular expression searching, signature files or
inversion [FO95]. However, these approaches do not scale well. None of them is applicable for the amounts
of data typical to digital libraries.

2 Problem

Large amounts of information or complex data are typical requirements for current applications. How does
software handle this information in a suitable way?

3 Forces

¢ Digital libraries handle large amounts of information;

Multimedia databases handle complex information;

Information retrieval systems require small space overhead, but also low computational overhead for
gueries and insertions;

Fast response time is important;

Designing feature extraction functions and scalable multidimensional indexing methods is hard.



4 Solution

Compute an alternative, simpler representation of data. The representation contains only the information
that is relevant for the problem at hand. This computation is actually a function. It maps from the problem
space into a feature space. For this reason it is also called “feature extraction function.”

Atypical feature extraction function for text documents is (automatic) indexing. The function maps each
documentinto a pointin thedimensional keyword (or feature) spack+s-the number of keywords. Auto-
matic indexing consists of the following steps [FO95]. First, it removes the common words like “and,” “the,”
etc. Next, the remaining words are reduced to their stem. For instance, both “computer” and “computation”
are reduced to “comput.” Then, a dictionary of synonyms helps to assign each word-stem to a concept class.
Finally, the method builds the vector in keyword space. Each vector element gives the coordinate in one of
thek dimensions and corresponds to a concept class. There are several options for computing these values.
Binary document vectors use only two values to indicate the presence of absence of a term. Vectors based
on weighting functions use values corresponding to term frequency, “specificity,” etc. Figure 1 illustrates
how document indexing maps from document space to 3-dimensional keyword space.
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Figure 1: Mapping a document into a 3-dimensional keyword space.

Typically, feature extraction maps fromlager problem space into amallerfeature space. Consider
the previous example of document indexing. In document space, one document contains a large number of
words. Searching a collection of documents requires many string matching operations. However, in keyword
space, documents correspond toltindimensional vectors. Searching for documents that contain a given
set of keywords involves comparing vectors. This is a simple operation, much faster than string matching.
Therefore, feature extraction (i) enables scalable solutions for problems that deal with large amounts of
information.

Domain mappings are a widespread technique in mathematics. Usually they magfsomplaxdomain
into asimplerone—here, complexity refers to the operations within the domain. A well-known example is
the operational method for the solution of differential equations [BS97]. The method consists in going from
a differential equation, by means of an integral transformation, to a transformed equation. The transformed
equation is easier to solve than its differential counterpart. Two possible integral transformations are the
Laplace transform and tretransform.

In a software context, mapping from problem space into feature space also enables computers to manip-
ulate complex information. Digital images are one example. Currentimage databases employ this pattern to
obtain simplified representations for images. Unlike the typical domain mappings from mathematics, these



representations are lossy. They consider ordylasef the image features. Common features for images
are color histograms, textures, shapes or a combination of these. Therefore, feature extraction (ii) enables
software systems to process different types of complex information without “understanding” the contents.

When it maps from a large problem space, feature extraction considers only a few “significant” features
in feature space, discarding the rest. This truncation yields a non-injective mapping. For example, two
documents can map into the same point in keyword space. However, this does not mean that they are
identical. Since the function is not injective, there is no inverse mapping. Several points in problem space
can map into a single point in feature space. This property affects all applications that employ this pattern to
provide answers to queries. The solution is to add a post-processing step that filters out the “false alarms.”
Since the typical number of false alarms is small, the post-processing step usually performs a sequential
search to eliminate them.

Besides post-processing, this pattern requires some other additional processing. For feature extraction
to be applicable, the features of the working set of items (documents, images, etc.) have to be available. The
system computes the coordinates in feature space for any new items. Each insertion needs this extra step.
Another operation that changes is query processing. The fundamental idea of feature extraction is to perform
all computations in a smaller, simpler space. Processing then takes place in this space. Consequently,
answering a query requires its representation in feature space as well. To summarize, feature extraction
complicates processing since it requires two additional processing blocks—Figure 2.
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Figure 2: Insertion and query processing without and with feature extraction.

Information retrieval (IR) is one of the domains that employs feature extraction extensively. For such
applications, the objective is to minimize response times for different sorts of queries. Performance depends
on how fast the system performs searches in the multidimensional feaage. spherefore, the choice of
a multidimensional indexing method is critical. However, this is not an easy task. Good unidimensional
indexing methods scale exponentially for high dimensionalities, eventually reducing to sequential scan-
ning [AFS93]. Consequently, they are applicable only when a small number of dimensions is sufficient to
differentiate between data items. The solution is to use R-tree variants, which are usable for a fairly large
number of dimensions.

The hard part about this pattern is obtaining a suitable feature extraction function. Obviously, this is do-
main and problem dependent. Feature extraction is mainly used for information retrieval and data mining.

3



One of the main requirements for these domains is correctness. A query should return all the qualifying
information, without any “misses.” The “false alarms” due to the non-injective mapping are not a problem:
post-processing (Figure 2) removes them. However, a formal proof is required to demonstrate correctness.
Alternatively, a domain-specific algorithm may automatically construct a correct feature-extraction func-
tion for a given problem. For example, [FL95] describes such an algorithm for indexing, data-mining and
visualization of traditional and multimedia datasets.

The Discrete Fourier Transform (DFT) is an example of feature extraction function. This function is
suitable for pink noise “signals,” whose energy spectrum foll@gt~1). A wide range of data (e.g., stock
prices, musical scores, etc.) fits this description. Consequently, DFT is usable in many different domains.
The transform is particularly useful for similarity search [AFS93]. Its properties guarantee the completeness
of feature extraction—i.e., correctness. Since DFT is orthonormal (i.e., distance-preserving), the distance
between two data items in problem space is the same as the distance between their corresponding points
in feature space. Therefore, DFT is applicable with any similarity measure that can be expressed as the
Euclidean distance between feature vectors in some feature space.

The next step after finding a feature extraction function is to decide on the features to consider further. As
stated before, not all features are used. For example, systems that use DFT keep only a few low-frequency
coefficients. This “lossy” part of the pattern ensures that feature space is smaller than problem space.
Deciding on the number of features is a tradeoff between accuracy and speed. At one extreme, the system is
“lossless” and keeps all features. This ensures no false alarms. However, searching a large (feature) space is
what the pattern is trying to avoid. At the other extreme, only one feature is used. In this case, the degenerate
searching in feature space is fast—it simply returns everything. Post-processing takes a long time though,
since it filters all data items. Therefore, the number of features determines the balance between searching
time in feature space and the post-processing time.

Choosing a suitable multidimensional indexing method is the last step. The choice depends on the
number of features—dimensions of the feature space. Many methods are available for indexing low dimen-
sionality domains. However, as the number of dimensions grows, they degenerate into sequential scanning.
R-tree variants (e.g., 'Rtrees [BKSS90] and SS-trees [WJ96]) offer good performance for a fairly large
number of dimensions.

To summarize, the feature extraction pattern has the followamgfits (C1) andliabilities (0):

0 Large amounts of data are manageable and no longer bring software to its knees. Compared to se-
guential searching, applications using this pattern obtain an increasingly better performance as the
volume of data increases [AFS93].

[0 Software can manipulate complex information without having to decode its semantics. This is key to
implementing multimedia databases.

[0 Users can easily refine queries. Once results are available, they mark only the ones that are relevant.
The system adjusts the original query and performs a new search. Provided that the user’s feedback
is consistent, such queries converge in a few iterations. This mode of operation is also known as
“relevance feedback” [SB88]. In feature space, relevance feedback is simple and consists of adding
the selected vectors to the query vector.

O Efficient search in feature space requires multidimensional indexing methods. Not all good indexing
methods scale well with the number of dimensions. Obtaining an efficient and scalable multidimen-
sional index structure is not easy.

O Inserting new items and answering queries require additional processing. The architect has to deter-
mine the right balance between the number of features and the post-processing time.



5 Implementation Notes

[Not yet written; will add some Smalltalk code.]

6 Examples

Feature extraction is not new. One of the pioneers of this pattern was Gerald Salton. He employed it in the
SMART system [Sal69] at Cornell, a long time before the term “digital library” was coined.

Professional recruiters use feature extraction as well. Hundreds of@ssumfirst scanned and partic-
ular keywords or patterns are searched for. Next, each individual in the recruiter's database is represented
as a point in a multidimensional “proficiencies”ag@. Here, each dimension corresponds to some skill
or characteristic. For example, knowledge of a particular programming language may correspond to one
dimension, while team-work experience and willingness to travel to others. A company looking for new
employees supplies a “wish-list” to the recruiter. Following the same procedure, this maps into a region in
the proficiencies space. All the individuals within that region are potential candidates for the company’s
openings.

Since all the information currently produced is available in electronic format, many other fields use fea-
ture extraction. These include telecommunications, multimedia, medicine, business, etc. However, despite
its widespread use, few studies document this aspect. Three documented examples from different domains
follow.

1. The authors of [KIJF97] use feature extraction to perform ad-hoc queries on large datasets of time
sequences. The data consists of customer calling patterns from AT&T and is in the order of hundreds
of gigabytes. Calling patterns are stored in a matrix whegreh element has a numeric value. The
rows correspond to customers (in the order of hundreds of thousands) and the columns correspond to
days (in the order of hundreds).

In this case, the problem is the compression of a matrix which consists of time sequences, while main-
taining “random access.” Generic compression algorithms (e.g., Lempel-Ziv-Huffman, etc.) achieve
good compression ratios. However, queries do not work on compressed data and require uncompres-
sion. This is not viable for the amounts of data corresponding to calling patterns.

Feature extraction avoids the need for uncompression. The function for feature extraction is singular
value decomposition (SVD). This truncates the original matrix by keeping only the principal compo-
nents of each row and achieves a 40:1 compression ratio. Therefore, SVD maps the large customer
calling pattern matrix into a smaller matrix in featureasp. The compressed format is lossy, but
supports queries on specific cells of the data matrix, as well as aggregate queries. For example, a
guery on a specific cell is “What was the amount of sales to ACME, Inc. on August 16th, 1997?" The
method yields an average of less than 5% error in any data value.

2. Large amounts of data are also typical in the financial domain. Feature extraction provides a fast way
for searching stock prices [FRM94] and is useful for any other time-series databases (e.g., weather,
geological, environmental, astrophysics or DNA data).

The problem here is to find a fast method for locating subsequences in time-series databases. The
system needs to answer queries like “Find companies that have similar sales patterns with ACME,
Inc.” Sequential scanning is not viable for several reasons. First, it does not scale for large amounts
of data. Second, it has a large space overhead, since each search requires thityedilab entire

time sequence.



Feature extraction provides a fast and dynamic solution. In this case, the feature extraction function

is ann-point Discrete Fourier Transform (DFT). This maps each time-series into a trace ittia mu
dimensional feature space. Since the method considers only a few low-frequency coefficients, queries
return a superset of the actual results. However, post-processing eliminates all “false alarms.” The
space overhead is small, and the response times are orders of magnitude faster than a sequential scan.

3. Besides handling large amounts of data, feature extraction is also applicable for software systems
that manipulate complex information. Digital images are a typical example. Computers are good at
manipulating the basic image components like luminance and chrominance. However, decoding the
semantics of the information contained within an image (its contents) is still a research issue.

In [PF97], the authors employ this pattern for similarity searching in image databases. The problem
is to support queries by image content for a database of medical images. A typical query is “Find all
X-rays that are similar to Bob’s X-ray.” This problem has the following requirements. First, it needs
to be accurate. The results of a query must return all qualifying images. Second, query formulation
must be flexible and convenient. The user should be able to specify queries by example, through a
GUIL. Finally, response times and scalability are important. Performance must remain consistently
better than sequential scanning as the size of the database grows.

The system represents image content by attributed relational graphs holding features of objects and
relationships between them. This representation relies on the (realistic) assumption that a fixed num-
ber of objects are common in many images—e.g., liver, lungs, heart, etc. All these common objects
are “labeled.” The method considers five features for each labeled object in the image. Five features
are sufficient for medical purposes. However, the method can handle any other additional features that
the domain expert may want to consider. This approach outperforms sequential scanning and scales
well with the size of the database.

7 Related Patterns

e Most systems that use feature extraction provide answers to different types of queries. In such sys-
tems, you can think of feature extraction as an “approximate proxy.” Each query returns a proxy
object [GHJV95]. This represents a “gateway” to feature space and encapsulates the post-processing
step.

e The pattern is independent of the feature extraction function. Domain experts select any function
that is suitable for some problem, ensuring that it produces correct results. A flexible solution is to
represent the various feature extraction functions as strategy objects [GHJV95].
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