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Chapter 11

Intentional Programming

Language exists to conceal true thought.

—Attributed to
Charles Maurice
de Talleyrand-Périgord

Why Is This Chapter Worth Reading?
This chapter presents groundbreaking concepts and technologies that
have the potential to revolutionize software development as we know
it today. We will discuss Intentional Programming (IP), which repre-
sents a perfect implementation platform for Generative Program-
ming. IP is an extendible programming and metaprogramming
environment based on active source, that is, a source that may pro-
vide its own editing, rendering, compiling, debugging, and versioning
behavior. The benefits of the IP technology are exciting, in particular:

♦It enables the achievement of natural notations, great flexibility,
and excellent performance simultaneously.

♦It provides optimal, domain-specific support in all programming
tasks (supports effective typing, rich notations, debugging, error
reporting, and so on).

♦It addresses the code tangling problem by allowing you to imple-
ment and easily distribute aspect-oriented language features.

♦It allows you to include more design information in the code and
to raise its intentionality (or as some like to say, “to raise the
level of abstraction”).

♦It helps with software evolution by supporting automated editing
and refactoring of code.

♦It makes your domain-specific libraries less vulnerable to changes
on the market of general-purpose programming languages.

♦It can be introduced into an organization in an evolutionary way
with exciting benefits for the minimal cost of initial training.
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♦It supports all of your legacy code and allows you to improve it.
♦It provides third-party vendors with a common infrastructure

and a common internal source representation for implementing
and distributing language extensions and language-based tools.

♦It promotes domain specialization and facilitates more effective
sharing of domain-specific knowledge.

The main ideas of Intentional Programming include

♦Representing both general and domain-specific programming
abstractions directly as language features (called intentions).

♦Replacing traditional, fixed programming languages with config-
urations of intentions that can be loaded into the system as
needed.

♦Representing program source not as a passive, plain text, but as
active source allowing the programmer to interact with it at pro-
gramming time.

♦Allowing for domain-specific extensions of any part of the pro-
gramming environment including the compiler, debugger, editor
(which displays active source and allows its entry), version con-
trol system, and so on. This feature enables you to provide
domain-specific optimizations, domain-specific notations
(including graphical ones), domain-specific error-handling and
debugging support, and so on.

In this chapter, you’ll learn about the philosophy and technol-
ogy behind Intentional Programming.

What Is Intentional Programming?
Intentional Programming (IP) is a new, groundbreaking extendible
programming and metaprogramming environment based on active
source, which is being developed at Microsoft.1 As a programming
environment, IP optimally supports application programmers in
their programming tasks and allows them to load extension
libraries to extend it with new general-purpose and domain-spe-
cific programming language extensions as needed for a given appli-
cation. Extension libraries may extend any part of the environment
including the compiler, debugger, editor, version control system,
and so on. As a metaprogramming environment, IP optimally
supports language implementers developing extension libraries. It

Extension
libraries

Programming
versus
metaprogram-
ming
environment
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1. See www.research.microsoft.com/ip and [Sim95, Sim96, Sim97, ADK+98,
Röd99].



provides metaprogramming capabilities including a code-transfor-
mation framework, protocols for coordinating the compilation of
code using independently developed language extensions, special
debugging facilities for debugging metacode, and sets of standard
APIs for extending the various parts of the environment. Similar to
application programmers, language implementers can also take
advantage of the extensibility of IP and load extension libraries
providing notations and facilities that help to do their job more
efficiently.

One of the main ideas of IP is to represent program source not
as plain ASCII text, but as active source, that is, a graph data struc-
ture with behavior at programming time. The behavior of program
source is implemented using methods operating on the source
graph. The methods define different aspects of the source including
its visualization, entry, browsing, compilation, debugging, and ver-
sioning behavior. User programs are written using language
abstractions loaded into the system. In the simplest case, you may
load a set of C programming abstractions, which will let you write
C code. However, any useful combination of general-purpose and
domain-specific language abstraction can be loaded and used in a
program. In the IP terminology, language abstractions are referred
to as intentions. IP lets you implement new intentions by declaring
them and implementing their methods. The methods are then com-
piled into extension libraries (which are basically a general kind of
active libraries discussed in Section 8.7.4). When you want to use
certain intentions, you load the corresponding extension libraries
into the development environment. Thanks to the code in the
extension libraries, the IP system will know how to display source
using these intentions as well as know how to support its entry,
browsing, compilation, debugging, versioning, and so on.

Intentions are not to be confused with object classes: The meth-
ods of an intention are called at programming time, and they sup-
port all the different aspects of program development that uses this
intention. This is also the added value of intentions: By implement-
ing abstractions as intentions rather than classes, your abstractions
can actively support editing, compiling, optimizing, profiling, test-
ing, and browsing programs that use these abstractions.2

An exciting aspect of IP is the possibility of implementing and
using domain-specific abstractions as intentions. This gives you the
opportunity to implement domain-specific notations, for example,
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2. Please note that intentions live one level above object classes: An intention
implements a language feature, that is, you can implement the class construct
as an intention. 



mathematical formulas can be displayed using true two-dimen-
sional notation (e.g., variables with subscripts). You can also have
graphical notations or embed GUI controls in the source (see Fig-
ure 11-14 through Figure 11-20 for IP screen shots demonstrating
these capabilities). There are virtually no limitations to the kind of
notation you can implement. Also, you can truly interact with an
instance of an intention in a program. For example, the program
source can contain an instance of a decision table, which is ren-
dered as a table control, and the data you enter in the table is
checked for consistency during entry. However, the most exciting
point is that domain-specific notations may implement their own
domain-specific optimizations. For example, you can have a nicely
visualized mathematical formula (just like in a math textbook) and
still have the system generate very efficient code for it. In fact, the
code could be more efficient than what you would manually write
in C or even Assembler. This is so because the system can apply
complex optimizations of the application code that would not be
practical to perform manually (e.g., a set of matrix intentions
could implement various complex cache-based optimizations of
matrix code). Because the system allows you to implement differ-
ent alternative visualizations that you can switch between, you can
have different views showing selected aspects of the source code in
different textual and/or graphical notations. This is similar to the
way CAD systems work, by letting you choose a particular view
on a complex structure.

Another feature of IP is the elimination of the need for parsing.
This is very useful because parsing limits the extendibility of cur-
rent programming languages. For example, the grammar of C++ is
context sensitive, extremely complex (contains several reduce/
reduce ambiguities), and difficult to extend without making it
unparsable. Furthermore, standard C++ has a number of artificial
syntax rules that had to be added to the language in order to keep
it parsable. An example of such a rule is the necessity to separate
two closing angle brackets in template expressions by an extra
space (e.g., foo<bar<foobaz> >) in order to distinguish them from
the right-shift operator (i.e., >>). Another example is the strange
way of distinguishing the declaration of the postfix variant of the
increment operator from the prefix one (i.e., ++() versus ++(int)).
IP does not have such problems because it eliminates the need for
parsing altogether. The source graph is built as you type. When
you enter a name of an intention, the system will create an instance
of it and may activate some of the intention’s methods to help
enter further nodes. For example, if you type in the name of a pro-
cedure declared elsewhere, the system will create a procedure call

Eliminating the
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and insert a placeholder for each argument. Next, you can tab
through the placeholders and replace them by the actual argu-
ments. You can think of the editing process as working with a
WYSIWYG3 word processor rather than with a simple text editor.
That is, while editing, you are modifying a more complex underly-
ing representation rather than just simple text. Furthermore, each
text element may exhibit its own behavior. However, it is impor-
tant to point out that the IP editor is not a syntax-oriented editor,
and this is good. You are in full control over what kind of source
graph you are building. There are commands that help you navi-
gate in the graph and make any changes you wish. In other words,
you can enter programs that would not compile (the structure of
the program is checked when you compile it). This is very useful
during coding because the requirement to adhere to some program
syntax at any point in time is impractical. All in all, direct editing
allows IP to support extendible and feature-rich domain-specific
notations.

Thanks to the possibility of introducing new language abstrac-
tions, you can capture more analysis and design information in the
source code. This is so because you can introduce new intentions
to represent the analysis and design abstractions for your software
and use them right in the source. In many cases, the information
that would otherwise make a great comment can actually be repre-
sented in a machine-processable form. You can achieve this in IP
by introducing new abstractions to represent this information.
Furthermore, programmers can introduce intentions to capture
common patterns and idioms they would otherwise have to enter
manually over and over again. Most importantly, such intentions
would not be just simple textual macros, but proper language fea-
tures. Thus, the main goal of IP is to help to represent source as
intentionally as possible, that is, without any loss of information
or obscure language idioms and clutter.

The main reason refactoring is so difficult to do today is that
most of the design information is missing from the conventional
implementation source. IP changes this situation. Because the
source is represented as an extensible abstract syntax tree, and you
can provide higher-level representations of your program, it
becomes possible to automate refactoring and evolution to a high
degree. You don’t have to parse textual source and recognize code
patterns and higher-level design structures in it before refactoring
(which is not possible to do automatically in implementations
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encoding

Refactoring and
software
evolution

11.2 What Is Intentional Programming? 507

3. What You See Is What You Get



using conventional general-purpose programming languages)
because they are present directly in the source.

A problem faced by library vendors today is that general-pur-
pose languages come and go, and the vendors are often forced to
reimplement their domain-specific libraries in a new language.
This is different with IP because your domain knowledge is repre-
sented using domain-specific abstractions and structures. Thus, the
changes you apply to the source are dictated by the development in
the domain and by the need to improve your source to better
reflect the domain rather than by changes on the market of gen-
eral-purpose languages. As a result, your investment into domain-
specific code is better protected.

Given the possibility of concentrating on domain-specific repre-
sentations and the support for automated refactoring, you can actu-
ally constantly improve and evolve your software. As you “grow”
your domain-specific libraries, you can improve the domain-specific
notations, add more and more sophisticated domain-specific opti-
mizations based on the newest research, provide interoperability
with other domain-specific libraries that are likely to be used with
yours, and so on. Unlike the integration of runtime components,
such as JavaBeans, COM, or CORBA components, there are no run-
time performance penalties for the integration of extension libraries.
This is so because extension libraries interact at compile time to gen-
erate efficient code. All in all, IP allows you to improve the sources
of your libraries in an iterative and sustainable way, so that you can
become and then grow as a champion of your domains.

One way of thinking about IP is to view it as a perfect environ-
ment for metaprogramming. This is particularly true if you com-
pare it to template metaprogramming in C++ (see Table 14-18 in
Section 14.4.3). Template metaprogramming gives you only a lim-
ited set of abstractions to express metaprograms. In IP, on the
other hand, you can use the same facilities at the metalevel as those
available at the base level. That is, you can use the same intentions
to write application code and extension libraries. However, if you
wish to use special declarative notations to specify language exten-
sions, you may provide them as extension libraries. A further
shortcoming of C++ is that you cannot provide your own library-
specific compile-time warnings. This is different in IP because
extension libraries may attach user-defined error warnings to erro-
neous locations in the source they help to compile. Another prob-
lem with template metaprogramming is that you cannot debug
template metaprograms because you cannot debug the compila-
tion process. The IP environment, on the other hand, provides a
debugger that you can use to debug the metacode. In particular, it
lets you debug code transformations so you can view the different
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intermediate results of code transformation and also step through
the execution of the code at the source level or the different inter-
mediate transformation levels. Additionally, IP lets you debug the
execution of the metacode itself. Finally, template metaprograms
only extend the compilation process, whereas extension libraries
may also contain metacode that implements other aspects of inten-
tions including their visualization, entry, debugging, and so on.

You can also think of IP as a perfect implementation platform
for aspects (see Chapter 8). You can implement aspect languages
and aspectual composition mechanisms as extension libraries. In
addition to compile-time weaving, you can also implement different
aspectual views as different kinds of visualization of a single source.

Finally, it is important to note that existing code written in any
language can be imported into the IP system. In order to import
legacy code in a given language, you only need to provide a parser
and a set of intentions for that language (import parsers for C, C++,
and Java are already available in the IP system). Once imported into
the IP system, you can start improving the legacy source by introduc-
ing higher-level abstractions that were not present in the original
language (e.g., introducing templates or preconditions and postcon-
ditions, intentions representing common idioms in the source, and
domain-specific abstractions) and restructuring the code. All the
refactoring capabilities of IP can be used in this process. So, the
introduction of IP can be an evolutionary process instead of a revo-
lutionary one. You can keep your legacy code and actually reengi-
neer and improve it using IP. Thus, the introduction of more radical
domain-specific notations does not have to be a revolutionary
change. IP allows you to perfectly mimic the traditional text-based
way of typing in source code (you’ll see this in Section 11.4.1).

IP is the brainchild of Charles Simonyi,4 who has been leading
its development since the early nineties. He refers to IP as an “OS
for abstractions” [WTH+99], meaning that IP provides a set of
basic APIs and an infrastructure for developing language abstrac-
tions. The initial version of IP was implemented in C and after
implementing the C intentions, the system was bootstrapped, that
is, all IP sources were imported into IP.5 This way, the system “lib-
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4. Charles Simonyi hired and lead the teams that originally developed the
Microsoft Word and Excel products.
5. C++ would have certainly been a more appropriate choice for implement-
ing such a complex system. According to the IP development team, complet-
ing the first bootstrap had the highest priority, however. This was the reason
IP was originally implemented in C. Implementing C intentions was by far a
simpler job than implementing C++ intentions. The C++ intentions were
implemented later.



erated” itself from C, and since then, new intentions have been
added and also used in its implementation. Since the first bootstrap
in 1995 [Sim95], all IP development has been done in IP itself. This
provides the IP development team with an excellent opportunity to
refine and improve the system as they use it.

Technology Behind IP6

System Architecture

The IP system is an extendible programming and metaprogram-
ming environment containing all the usual components of a typical
integrated development environment (IDE) including an editor and
browsing tools, a compilation component (reduction engine), a
debugger, a version control system, and parsers for importing
legacy source. All these components operate on the IP source
graph. The architecture of the IP IDE is shown in Figure 11-1.

Compared to the components of a conventional IDE, the com-
ponents of the IP IDE have special capabilities including
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6. As of this writing, the IP system is still under development, and the rest of
this chapter describes the status of the system at the end of 1999.

11.3.1
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Figure 11-1 Main components of the IP system



♦Editor and browsing tools: As in any IDE, the editor is used for
viewing and entering program source. However, the IP editor is
not simply a text editor, but rather a graph data structure because
the program source in IP is not text (more precisely: syntax tree
with links to declarations). This data structure is built up immedi-
ately as the source is being typed in (i.e., we can say that the editor
replaces the parser of a traditional IDE). Furthermore, the IP edi-
tor supports true two-dimensional textual and graphical source
views and allows the programmer to interact with the elements of
the program source at programming time. In particular, mouse
clicks and keystrokes entered on a given program element may be
handled by this element (more precisely: by its methods). The IDE
also provides a set of browsing tools and facilities for navigating
in the program source. Because the program source has the form
of a syntax tree with links to declarations, full and up-to-date
browsing information is available all the time. We will discuss the
editor and browsing tools in Section 11.4.

♦Reduction engine, code generation backends, and linker: The IP
reduction engine is the code-transformation framework of IP, and
it plays the role of a compiler. There are several differences
between the reduction engine and a compiler, however. First of
all, there is no parser because the source is already available as a
syntax tree with links to declarations. Furthermore, the reduction
engine implements a transformational approach to compilation.
After checking the structural correctness of the source, the reduc-
tion engine applies a series of transformations in order to generate
an implementation consisting of a limited set of primitive abstrac-
tions called the reduced code or R-code. The ordering of the
application of transformations is done partly by the reduction
engine and partly by the transformation writers. Different R-
codes can be defined for different target platforms, and the source
can be reduced to different R-codes. Finally, an appropriate back-
end generates the platform-specific object code from a given R-
code. For example, the backend from the Visual Studio product
family is used to generate machine code for the Intel processors,
and a different backend is used to generate Java bytecodes. The
resulting object files are linked by a standard linker into an exe-
cutable or a library. The reduction engine, together with some
appropriate backend, can also be used to generate artifacts other
than executable programs. For example, we can use this capabil-
ity to generate documentation from the program source or imple-
ment higher-level language for generating Web pages.

♦Debugger: The debugger allows the programmer to step through
the execution of the program at different levels: the source level

11.3 Technology behind IP 511



or any selected intermediate level produced by the transforma-
tions. You can also use the debugger to debug the IP system itself
and the extension libraries (i.e., the metacode you write).

♦Version control system: IP provides a team-enabled version con-
trol system, which works on binary IP source files. In contrast to
conventional text-based version control systems, the IP version
control system allows you to automatically merge two versions
of a source, where one contains renamed and relocated functions
and the other incorporates modifications in the bodies of these
functions. After merging, the modifications will be incorporated
in the renamed and relocated functions.

♦Import parsers: Language parsers, for example, for C++ or Java,
are needed for importing legacy code into the IP system. A given
legacy code needs to be imported only once. The imported code
is then saved in the IP program source format.

In contrast to traditional IDEs, any part of the IP system is
extensible. The editor, reduction engine, debugger, and version
control system may call system-provided default methods or user-
provided methods (which may override the default ones) to handle
new language abstractions (i.e., intentions). Methods defining the
programming-time behavior of intentions are compiled into exten-
sion libraries, which can then be dynamically loaded into the IP
system. For example, you can load the extension library for the
C++ language, which will enable you to write C++ code. You can
also load other sets of general and domain-specific intentions
(which can extend the editor to handle a new kind of textual or
graphical notation) and use them all at once.

Representing Programs in IP: The Source Graph

One of the main ideas behind IP is to represent source code directly
as abstract syntax trees (ASTs) and let the user enter, modify, and
compile them without ever having to work directly on program code
stored as plain ASCII text. In IP, each AST node has a link to its dec-
laration (e.g., a variable has a link to its declaration), for this reason
IP actually represents programs as source graphs, which can be
thought of as sets of interlinked source trees.7 In the following four

Source trees and
source graphs
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7. In compiler design, ASTs whose elements have links to their declarations
are referred to as “resolved ASTs.” Conventional compilers usually first build
unresolved ASTs using a parser, and then turn them into resolved ASTs by
adding links to declarations during the semantic analysis stage. Formally,
resolved ASTs are graphs, but not trees.



sections, we’ll take a closer look at the structure of source graphs.
This knowledge will help us understand how IP works internally.
However, please keep in mind that as an application programmer
using IP, you will not be permanently confronted with these details.

Treelike Structures
Suppose that you want to represent the expression x+x as a source
tree, that is, as an AST. To do so, you need a parent node repre-
senting the occurrence of the operator + and two child nodes repre-
senting the two occurrences of the variable x (see Figure 11-2). In
IP, the nodes of a source tree are also referred to as tree elements
(or TEs), and the child nodes are often called operands.

Graphlike Structures
In IP, anything you use has to be declared and defined somewhere.
So, although the source tree in Figure 11-2 contains nodes repre-
senting just the occurrences of the operator + and variable x, the
actual operator + and variable x have to be declared somewhere.
Furthermore, every tree node in IP maintains a link to its declara-
tion. This is illustrated in Figure 11-3. The figure shows our famil-
iar source tree from Figure 11-2 plus the links to the declarations.
The parent has a link to a node representing the declaration of the
operator +, and the children have links to another node represent-
ing the declaration of the variable x. The links to declarations give
meaning to the three tree elements on the left: Now, we know that
the parent node is an occurrence, that is, an instance of the opera-
tor +, and the children are two instances of the variable x. It is
interesting to note that thanks to the links to declarations we do
not have to store any names in the tree elements on the left. If we

Tree elements
and operands

Declarations
and instances
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Figure 11-2 Source tree representing the expression x+x. Child nodes
are always drawn below their parent node and are counted in the top-
down direction.
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need the name of any of the tree elements (e.g., the variable name
“x”), we can retrieve it from the corresponding declaration. This
representation has an enormous advantage over textual code: If
you want to change the name of an abstraction (e.g., the variable
name), you only need to change it in the declaration and do not
need to update the places referring to the declaration. You’ll see
how this works in practice in Section 11.4.1.

Even though the links between parent and child nodes always
span a tree, this is not the case with the links to declarations. The

Treelike and
graphlike links
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Figure 11-3 Source tree of x+x plus declarations. Graphlike links to
declarations are drawn as dashed arrows. Nodes with a name label
are declaration nodes.

NOTE

It is important to note that names are only needed for the communication
with the human programmer. The system does not need names because it
references nodes using links, which are either pointers (for declarations and
operands that are in the same address space) or globally unique identifiers
(for declarations that are in a different address space). Furthermore, IP gives
us the opportunity to use names that are not stored, but computed on-the-
fly based on a given source pattern. For example, the generated name for a
function parameter of type char* could be pchar. This is not always satis-
factory, but if it is, it may save the programmer some tedious work. Finally,
IP also allows you to give more than one name to an intention. For example,
you may use short names for easy typing and then display source with long
names for easy maintenance.



latter may point to declaration nodes located in the same tree or a
different tree, and several nodes may have links to the same decla-
ration (e.g., several occurrences of x point to the same declaration
x). That’s why we refer to the links between parent and child nodes
as treelike links and the links to declarations as graphlike links (see
Figure 11-3).

As stated earlier, every node is an instance of some abstraction,
and every abstraction is declared somewhere. Therefore, there is
also a declaration declaring the very abstraction of “declaring,”
and every declaration node has a graphlike link to it (see Figure
11-4). This special declaration is called DCL. Because DCL is also a
declaration, it has a graphlike link to itself. Furthermore, declara-
tion nodes may also have child nodes—just as any other node. Fig-
ure 11-4 illustrates this for the declaration of x. The first child
node of this declaration node represents the variable type, which is
int. The second child is optional and represents the initializer—in
our example the value 1. This node has a graphlike link to the dec-
laration constant (i.e., it is an instance of the abstraction
constant). The actual value is stored as binary data attached to the
node, which is indicated as "1". It is interesting to note that decla-
ration names are also stored by attaching their binary representa-
tion to—in this case—declaration nodes.

Graphlike links always point to declarations, which are the
nodes with graphlike links to DCL. Examples of declarations in Fig-
ure 11-4 are +, x, int, constant, and DCL. Nodes that are not decla-
rations (i.e., nodes without a graph-like link to DCL) are called
references to declarations to which they have graphlike links. For
example, the first child of the declaration node x is a “reference to

DCL—the
declaration of all
declarations

Declarations
versus references
(to declarations)
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NOTE

In IP, treelike links are bidirectional, that is, you can navigate through these
links in both directions. Graphlike links, on the other hand, are unidirec-
tional and point towards a declaration node of an intention; that is, an
instance knows its declaration, but a declaration does not know its
instances. Furthermore, the point where a link “leaves” a node can be iden-
tified through a name tag (i.e., bidirectional links have tags at both ends,
and unidirectional links have a tag at their origin). This is similar to annotat-
ing associations with role names in UML class diagrams. For example, the
link connecting an instance of + with its left operand x could have the tag
leftOp at the + end and parent at the x end. IP provides an API for access-
ing nodes and links based on name tags.



int.” According to the terminology introduced at the beginning of
this section, you can also call it an “instance of int.”

Source Graphs: The Big Picture
Any programming abstraction you want to use in your program
has to be declared first. You can then use it by referring to its decla-
ration. For example, if you need to use a variable, you have to
declare it first. As seen earlier, this is also true for language abstrac-
tions, that is, intentions, such as +, int, constant, if, while, and so
on. Of course, to be really useful, the abstractions not only need to
be declared, but also defined, which can be accomplished by asso-
ciating appropriate methods with their declarations. These meth-
ods define their semantics, appearance, debugging behavior, and so
on. We will discuss methods in Section 11.3.3. Obviously, as a pro-
grammer, you don’t have to declare and implement basic inten-
tions, such as if or while yourself—they will come with libraries
distributed with the IP system. Furthermore, you will use third-
party libraries for domain-specific intentions or general-purpose
intentions with some interesting behavior. And you will also be
able to implement your own intentions for your area of specialty.

Intentions

516 Chapter 11 Intentional Programming

NOTE

It is interesting to note that IP does not introduce an explicit “variable inten-
tion” (i.e., an abstraction of variables). The declaration of a variable (e.g., x)
represents its own variable intention.

Subtree representing
x + x

Subtree representing
int x = 1;

x

DCL

constant

int

“1”

+

Figure 11-4 Source trees representing int x=1; and x+x

11.3.2.3



To get the big picture of how IP represents programs, let us
take a look at a larger example of a source graph (see Figure 11-5).
This graph contains the source tree of the following piece of C
code:

int x;

x = 1;

while (x<5)

++x;

The source tree of this program is shown in Figure 11-5 on the
left. It consists of a list of three statements. Each subtree represent-
ing one of the statements is enclosed in a gray box. Please note that
the two child nodes of the third statement (i.e., the while-state-
ment) represent the condition expression and the iteration state-
ment, respectively. The nodes on the right-hand side represent the
declarations of the intentions used in the user program. These
intentions are located in extension libraries loaded into the IP
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while (x<5)
++x;

x=1;
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Figure 11-5 Larger source graph example



system. For simplicity, not all children of the declaration nodes on
the right-hand side are shown in this figure.

The Essence of Source Graphs: Abstraction Sharing and
Parameterization
As stated previously, source graphs contain two kinds of links:
graphlike and treelike links. Graphlike links represent the concept
of referring to a declaration or being an instance of the declared
abstraction. Treelike links represent the concept of parameteriza-
tion: An instance of an abstraction can be specialized and con-
cretized for a given context by attaching child nodes to it. That is,
the child nodes of an instance can be seen as its actual parameters.

The idea of abstractions is central to source graphs. As previ-
ously stated, abstractions have to be declared, and then you can
use them by referring to them. For example, think of a source tree
containing two identical sequences of statements in two different
places. Obviously, you would like to eliminate this duplication to
have only one, shared sequence of these statements. We can
achieve this by introducing an abstraction: We declare a procedure
whose body is the statement sequence and replace the original
sequences in the original tree by calls to (i.e., instances of or refer-
ences to) this new procedure. Now, think of this abstraction
process in general terms: Any duplicate subtrees can be eliminated
by introducing an abstraction, and then referring to it. In other
words, the purpose of graphlike links is to enable sharing of struc-
tures in a source graph.

Of course, the subtrees that we want to abstract need not be
identical. If they are not identical, they have some differences, and
we can turn these differences into parameters of the abstraction.
When we are using an abstraction, we have to be able to supply
actual parameters to a particular instance of use. That’s what tree-
like links are for. For example, an instance of a while-intention
takes two parameters: the continuation condition and the iteration
statement. A procedure call (i.e., an instance of a procedure) takes
actual parameters. A template instantiation takes actual template
parameters.

Source Graph + Methods = Active Source

One of the main ideas behind IP is to represent programs as active
source, that is, source with behavior at programming time. Active
source knows how to display and compile itself and provides con-
venient and domain-specific ways of editing and debugging it. In
IP, this is achieved by defining methods (i.e., pieces of code) operat-

Treelike links
represent
parameterization

Graphlike links
represent
sharing

Rendering, 
type-in, and
reduction
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ing on the source graph. Different sets of methods implement dif-
ferent aspects of source behavior: There are methods for imple-
menting the visualization of the source graph (i.e., rendering),
supporting its entry (i.e., type-in), implementing its compilation
(i.e., reduction), debugging, and automatic editing and refactoring.

Abstractly, the idea of methods in IP is similar to the idea of
methods in object-oriented languages. Just as the methods
attached to a class define the behavior of the class’s instances, the
methods associated with a declaration of an abstraction in an IP
source graph define the behavior of the abstraction’s instances.

There is an important difference, however: Methods in object-
oriented languages are designed to be executed on class instances
at runtime, whereas IP methods are specially designed to operate
on source graphs at programming time. Consequently, the method
calling, lookup, and inheritance mechanisms in IP are radically dif-
ferent from those found in object-oriented languages. In particular,
IP methods are associated with patterns of nodes rather than just
single nodes and are specially designed to support efficient source-
graph traversals. We will discuss the IP method mechanism in Sec-
tions 11.5.1 to 11.5.4.

The IP system is organized like an object-oriented framework:
The system calls sets of system-defined default methods and user-
defined methods. The idea is that the default behavior is defined by
default methods, but language implementers can define specialized
behavior for new intentions by overriding the inherited methods.

Please note that methods are written by developers of exten-
sion libraries only, so that application programmers using IP do
not have to worry about them. However, just for the purpose of
understanding how IP works, let us take a look at the different
kinds of methods we can have in IP.

Kinds of Methods
We classify extension methods according to their purpose. The
main categories are as follows [Sha98].

♦Rendering methods: Rendering methods display the source
graph on the screen. They use the rendering API to produce dis-
play representations of the source graph. This can be simple text
or any kind of two-dimensional representation, for example,
two-dimensional mathematical formulas, diagrams, tables,
bitmaps (see Figure 11-14 through Figure 11-23), and so on.
Furthermore, you can define several sets of rendering methods,
each one implementing one specific visualization of the source
graph (including domain-specific modeling notations, different

Default methods
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formatting conventions, call graphs, metrics, rendering names in
different natural languages, and so on).

♦Type-in methods: Type-in methods are called when the source
tree is entered or manipulated. They assist the programmer in
typing in source. For example, you can define a method that
inserts the appropriate number of place holders when you type in
a reference to an intention (e.g., after typing in the name of a
procedure, the appropriate number of place holders for the argu-
ments are inserted) or when you want to do any other kind of
special editing (e.g., typing in a type will replace the type by a
declaration of a variable of this type). There are methods that
define how to select the elements shown on the screen, the tab-
bing order, and so on.

♦Reduction methods: The process of transforming source trees
into lower-level trees is referred to as reduction. The final result
of this process is a tree containing only the instances of a prede-
fined set of low-level abstractions for which machine code can be
directly generated (in the phase called code generation). This rep-
resentation is referred to as reduced code or R-code. When you
tell the system to compile your program, the system will ask the
root node of your program for its R-code, which involves acti-
vating the reduction method for this node (which in turn acti-
vates the reduction methods of its subnodes, and so on).
Reduction methods compute the R-code by successively reimple-
menting higher-level constructs by lower-level ones. An example
of a reduction step could be implementing a while-loop using an
if- and a goto-statement, for example:

while (x<5) TEST: if (x<5)

++x; {  ++x;

goto TEST;

}

As you will see in Section 11.5.5, the lower-level representations
are actually attached to the original source tree rather than replac-
ing the parts being reduced. Indeed, a reduction method is not
allowed to delete any links in a source graph, but only to add new
ones. In other words, during reduction, the source graph grows
monotonically as more and more lower-level abstractions are
attached to the tree. This way, it is easy to make sure that the
reduction process is actually progressing and will terminate at
some point. Of course, just as in any compilation process, reduc-
tion methods also perform structural analysis (e.g., syntax and
type checking) and code optimizations. For this purpose, a method

Reduced code
(i.e., R-code)
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operating on a node can ask for information not only about the
near context of this node, but also remote parts of the source
graph. Finally, there may be several sets of R-code intentions—
each set defined for a different target platform, for example, the
Intel 86 family of processors or Java bytecodes. In many cases, you
can implement methods for the high-level intentions such that they
can be reduced towards different target platforms. However, there
can be intentions that cannot be reduced towards some specific
platform, that is, they cannot be implemented using the platform-
specific set of R-code intentions. For example, pointer arithmetic
cannot be “reduced” to Java bytecodes in an efficient way.

♦Debugging methods: The standard functionality of a debugger is
to allow you to watch the execution of some executable at its
source level and inspect the runtime values of its variables.
Implementing this functionality requires being able to identify
the place in the source that corresponds to the lower-level con-
struct being currently executed. This is not a problem as long as
the mapping between the corresponding locations in the source
and the executable is a linear one (i.e., continuous blocks of
source map to continuous blocks of executable code). (We have
discussed the concepts and problems of linear and nonlinear
code mapping in Section 8.7.2.) Debugging code with a linear
mapping is handled by the debugger automatically. Unfortu-
nately, if we want to support code optimizations and/or aspect-
oriented language features, this mapping will be nonlinear. For
example, code optimizations may eliminate parts of the source or
change the ordering of instructions. Furthermore, code weaving
needed for aspect-oriented language features will merge different
code pieces into a single one. And because we want to be able to
write reduction methods implementing domain-specific opti-
mizations and code weaving in IP, we need to deal with the prob-
lem of nonlinear code mapping. The solution to this problem is
to provide debugging methods, which can compute the desired
mapping from lower-level implementation back to the higher-
level source for the nonlinear case. For example, a reduction
method can optimize away certain variables present in the
source. If we want to step through the execution of the optimized
code at the source level, we need to provide a debugging method
that recreates the values of the variables in the source from the
values of some other relevant variables at the execution level.
Only in this way will we be able to inspect the source-level vari-
ables during debugging. So the idea is that, if an intention pro-
vides a reduction method with nonlinear code transformations, it
also needs to provide an appropriate debugging method that
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allows the debugger to do the mapping back. Furthermore,
aspect-oriented and domain-specific language features can
require some special debugging support, for example, highlight-
ing timing constraints when they are violated. Such extra,
domain-specific debugging features can also be provided as
debugging methods. Finally, because IP is both a programming
and metaprogramming environment, it supports the debugging
not only of application code, but also metacode (i.e., extension
libraries). For example, in order to debug reduction methods,
you can make calls to a special function that takes a snapshot of
the intermediate state of the tree being reduced by a given reduc-
tion method. This way, you can later inspect the different inter-
mediate representations produced during the reduction process.
The debugger will also let you debug the execution of the exe-
cutable produced by the reduction methods at any of these inter-
mediate levels. Therefore, you may also want to equip your new
intentions with debugging methods that support not only debug-
ging at the source level, but also at the intermediate levels.

♦Editing and refactoring methods: Because program source in IP
is represented as an AST, it is quite easy to write methods for
mechanical source editing and restructuring. You can have sim-
ple editing methods, such as applying De Morgan’s laws to logi-
cal expressions or turning a number of selected instructions into
a procedure and replacing them by a call to this procedure (in IP
this is done with the lift command). Other methods may perform
complex design-level restructuring of legacy code (i.e., refactor-
ings), for example, extracting the interface between different
parts of the source and modifying the module structure of a soft-
ware, replacing inheritance through aggregation, finding and
eliminating duplicate or similar code, and so on.

♦Version control methods: Version control methods allow us to
define specialized protocols for resolving conflicts when two or
more developers edit the same piece of code. In general, version-
ing is subject to intentions-specific handling because you can
treat language abstractions (e.g., modules, procedures, classes,
and methods) as units to be locked and versioned separately.

There are also other methods that do not fit in any of these cat-
egories.

Working with the IP Programming Environment
The IP programming environment supports all the usual program-
ming activities: writing and versioning code, compiling, and
debugging. Figure 11-6 shows a screenshot of a typical program-

IP document
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ming session. The editor subwindow contains a simple “Hello
World” program using C abstractions. The program can be stored
on a disk in a single binary IP source file referred to as a document.
In general, a program can consist of more than one document. The
smaller subwindow located to the right of the document editor sub-
window is the declarations list tool. This tool allows the developer
to do a name-based search for a declaration among the currently
loaded declarations. A click on one of the displayed names opens
the document containing the corresponding declaration in the cur-
rent editor window. There are other browsing tools, such as the ref-
erences list tool, which shows all the references to a certain
declaration; libraries list tool, which enumerates all the currently
opened libraries; to-do list tool, which displays a list of to-do anno-
tations in the current document; and so on. There is also a tree
inspector, which graphically shows the exact tree structure of the
selected code. Finally, you can jump to the declaration of a selected
node using the go-to-declaration button located on the menu bar.

The “Hello World” program can be compiled by simply push-
ing the compile button on the menu bar. This initiates the reduction
process, which, if successfully completed, is followed by the genera-
tion of the executable. If there are syntax or semantic errors in the
source, the error notifications are attached to the appropriate
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Figure 11-6 Screenshot of a typical programming session with the IP
system



nodes, so that they appear on the screen in a different color next to
the erroneous positions in the code, and you can use a “jump to
next error” tool to visit these positions. After a successful compila-
tion, it is possible to step through the intermediate results of the
reduction process (these are recorded by a snapshot function, which
can be called at various places in the reduction methods). Finally,
you can debug the program by stepping through its execution at the
source level or any of the intermediate levels.

Editing

Probably the most unusual experience to a beginning IP program-
mer is editing. This is because you edit the tree directly, which is
quite different from text-based editing. To give you an idea of how
tree editing works, we will walk through a simple editing example.
Figure 11-7 shows you how to type in the following simple pro-
gram:

int x = 1;

int y;

y = x + 1;

Each box in Figure 11-7 shows you the editing screen after
typing the text shown below the preceding arrow. We start with
the empty screen and type in “int”. While typing it, the gray selec-
tion indicates that we have still not finished typing the token. We
finish typing it by pressing <tab> or <space> (the first is preferred
because it automatically positions the cursor at the next reasonable
type-in position). After pressing <tab>, the system will perform a
couple of actions behind the scenes leading to the creation of a
variable declaration with type int (see box 2 in Figure 11-7). Let
us take a closer look at these actions. After we’ve pressed <tab>,
the system first tries to find a binding for the token we have just
typed in. In our case, the system finds that the token “int” matches
the name of the declaration of the type int. Next, the system calls
the type-in method of int. This method creates a variable declara-
tion with type int, that is, a declaration node with a reference to
int as its child. To be more precise, int does not provide its own
type-in method, but inherits one from Type, an intention that is the
type of all types (see Figure 11-5). The name of the newly created
declaration is set to “???”. We can see the result in box 2 in Figure
11-7. Because we’ve pressed <tab> last, the cursor is now posi-
tioned at the next reasonable type-in position. In our case, the dec-
laration name (i.e., “???”) is now selected, and we can type in the
name of the declaration, for example, “x”. The result is shown in
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box 3. We finish typing this token by pressing <tab> and then press
an extra <tab> to position the cursor for typing in the initializer
(see box 5), which in our case is “1”. The result of entering “1” is
in box 6. The source tree corresponding to what we’ve typed in,
that is, int x=1;, is shown in Figure 11-4. Please note that we did
not explicitly type in the equal sign. This character is merely a dis-
play artifact displayed by the rendering method of the declaration.
Next, by pressing an extra <tab>, we position the cursor behind
the declaration statement in the current statement list and are
ready to type in the next statement (see box 7). We type in the sub-
sequent two statements in an analogous way. Please note that we
actually have to explicitly enter an equal sign in the third statement
because here it denotes an assignment.

Earlier, we said that changing a name (of a variable, function,
class, and so on) in IP is very easy because we only need to change
it in the declaration and do not need to search for all the places
where it is used in order to replace it. Let us take a look at this in
practice. For example, we might want to rename x in the sample
code we’ve just typed in, let’s say, to z. All we have to do in IP is
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NOTE

IP also lets you to finish typing the name of a variable declaration by typing
“=” instead of pressing <tab>, in which case you’ll be expected to enter the
initializer as next. In other words, IP not only supports alternative render-
ings, but also alternative ways of type in—to suit your most natural way of
typing code.

int
1 2 3 4

5 6 7 8

<tab>

<tab> <tab><tab>1 (type in the
rest in a 

similar way)

x <tab>

int ;

int x ; int x = 1; int x = 1;
int y;
y = x + 1;

int ??? ; int x ; int x ;

int x = 1;

Figure 11-7 Typing in a simple program in IP



select the name of the first declaration (box 1 in Figure 11-8) and
change it to z (see box 3). Because all references to the declaration
x do not store its name (but the display method retrieves it from
the declaration for display), the third statement displays the cor-
rect name immediately (see box 3). This simple example illustrates
the power of the IP source representation compared to text-based
representations. Also, if we select z and then push the go-to-decla-
ration button, the cursor will jump to the z declaration. So, you
can always verify which abstraction is meant by a given token on
the screen. In fact, we could have changed the name of the declara-
tion y to z as well. In this case, the last statement would contain
two references to z, that is, it would read z=z+1, but both refer-
ences would still correctly point to the two different previous dec-
larations (we could verify this using the jump-to-declaration
button).

As a second example, let us take a look at how to enter the
“Hello World” example from Figure 11-6. First you need to open a
new document named “Hello World” using the “new” button
from the menu bar. This will give you the window shown in Figure
11-9. The document now contains a new module named Hello
World.

Next, we need to import the system library, which provides the
declaration of the function main() and the declaration (and imple-

526 Chapter 11 Intentional Programming

(select x)
1 2 3

<tab>z

int x = 1;
int y;
y = x + 1;

int z = 1;
int y;
y = x + 1;

int z = 1;
int y;
y = z + 1;

Figure 11-8 Changing the name of a declaration

NOTE

It is interesting to note that if there is more than one declaration with the
same name in a given scope, typing in the name will actually not bind it to
any of them. The name (i.e., the token we’ve typed) would turn yellow
instead, indicating a dangling reference. We could still bind it using a list
tool listing the candidate declarations and select the one we would like to
bind it to. Another interesting observation is that scoping rules are imple-
mented by the editing methods.



mentation) of the function printf(). This can be achieved by using
a command or typing it in directly. The result is shown in Figure
11-10.

Now, we are ready to define an implementation of the main()
function. The idea is that the function main() is declared in the sys-
tem library, but we want to define its body here. This can be done
using a so-called “define procedure body” declaration, which is an
example of a special intention provided by IP. Starting with the sit-
uation in Figure 11-10, we type “DefineProcBody” between the
braces and press <tab>. This creates a declaration with the type
DefineProcBody. The result is shown in Figure 11-11. The first
“???” should be replaced by a reference to a procedure declaration
that we want to define the body for. The second “???” should be
replaced by the name we want to give to our “define procedure
body” declaration.

Next, we replace the first “???” by “main”, which will create a
reference to the declaration of the function main(). At this point,
the rendering method for the declaration DefineProcBody will dis-
play the argument list of main() as declared in the system library.
This is shown in Figure 11-12. In other words, the argument list
you see in this figure is not part of the source tree you just typed in,
but is merely a display artifact (which is indicated by its gray
color). The idea is that the argument list is defined only in one
(remote) place (which is the declaration of main() located some-
where in the system library), and you can still see the argument list
while implementing the procedure body.

Now you can start typing the body of the procedure. For
example, when you type in “printf” and press <tab>, this will be
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Figure 11-9 New document named “Hello World”



expanded to a call to printf(). Because the declaration of
printf() located in the standard library indicates that the function
takes one argument, the system will provide a placeholder for that
argument in the call (see Figure 11-13).

By replacing the argument placeholder with the string “Hello
World”, entering the final return statement, and replacing the
remaining “???” with the name “dpbHelloWorldMain”, you get
the desired result shown in Figure 11-6.

Further Capabilities of the IP Editor

Clicking on a token on the screen does not select its letters (as it
would in the case of a traditional text editor), but instead selects
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Figure 11-10 “Hello World” module importing the system library

Figure 11-11 “Hello World” module with an empty DefineProc-
Body declaration

Different types
of selections

11.4.2



the corresponding tree node or subtree. In fact, there are a number
of different selection types. You can select one node (crown selec-
tion), or a node including all its subnodes (tree selection), or you
can select a place between two nodes (place selection). It is also
possible to select the token as such and change its name (contents
selection). If the token is a reference, then the reference will be
rebound based on the new name. If the token is a name of a decla-
ration, the name will simply be changed (as in Figure 11-8). There
are also other types of selections (which will not be discussed). You
can achieve the desired selection type by holding down an appro-
priate modifier key while clicking on a given token.
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Figure 11-12 “Hello World” module with an empty DefineProc-
Body declaration for main()

Figure 11-13 “Hello World” module with a DefineProcBody declara-
tion for main() with a body containing an incomplete call to printf(0)



Avoiding the
parsing problem

As already stated, the IP editor is not a syntax-oriented editor,
that is, it is perfectly acceptable for the edited tree to be in a state
that would not compile. For example, if you type a name that can-
not be bound to any declaration (because there is not one with this
name), the token will turn yellow, and you’ll know that you need
to fix this before attempting to compile the source. Also, as you
type, the structure of the tree can be syntactically incorrect. On the
other hand, through type-in methods, intentions may provide the
programmer with type-in templates and suggest what to type in
next (as we saw in the previous section). In effect, syntax errors are
quite rare, and you still have the freedom to type in the source as
you wish without being forced into the straightjacket of some syn-
tax at every moment.

The major advantage of editing active source is that we are not
dealing with passive text, but instead, the source has an interactive
behavior. The intentions can even exhibit different type-in behav-
iors based on their tree context or the currently active view. Fur-
thermore, they can interact with the developer through menus,
dialogs, and so on.

The IP source rendering provides unique opportunities. First,
intentions can be rendered in a true two-dimensional way allowing
you to provide pretty mathematical notation. For example, Figure
11-14 shows an implementation of the Bessel function using C and
some special mathematical intentions. This example is attractive in
two ways. First, it is expressed in an easy to understand and pretty
mathematical notation, which is close to what you find in math
books. Second, there is a somewhat more complicated but reusable
optimization transformation attached to the helping function t().
The display of this transformation is suppressed in Figure 11-14.
The transformation transforms the costly, recursive function t()
into a linear-cost function (basically by remembering previously
computed values in a temporary). Thanks to it, the Bessel function
compiles into a very efficient implementation—one that we other-
wise could only get by writing hand-optimized, but messy code.
But thanks to IP rendering and the possibility of contributing
domain-specific optimizations, we get an easy to understand and
nice looking formulation of the Bessel function plus one messy, but
reusable optimization transformation instead of one efficient, but
messy Bessel function.

Figure 11-15 demonstrates a few mathematical notations for
handling matrices. An interesting point about these naturally look-
ing notations is that they would be extremely difficult to parse if
we wanted to provide them using traditional input technology uti-
lizing text and parsing. In general, mathematical notations found

Achieving clean
encoding and
high
performance at
the same time
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Figure 11-14 Example of a domain-specific notation for mathemati-
cal formulas (from [Sha98])

Figure 11-15 Example of specialized notations for handling matrices8

8. Courtesy of Lutz Röder.
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NOTE

You may wonder why a syntactically ambiguous representation may still be
useful. This is so because syntactic ambiguities can often be disambiguated
based on additional semantic information. This idea is frequently used in
math books to make math formulas easier to understand. In all but the sim-
plest cases, such ambiguities cannot be resolved in the parser because
parsers do not have access to higher-level semantic information. In IP, how-
ever, the disambiguation is done by the programmer while typing.

As Eric van Wyk pointed out, there are two issues resulting from the sepa-
ration of display and type-in from the actual source structure that IP novices
may find somewhat confusing. First, most programmers are accustomed to
the idea that the code they see is actually the source with all the details it
contains, but as stated previously this is often not the case in IP. The IP pro-
grammer may have to navigate in the code or use the detailed source tree
view described at the end of this section to discover the actual structure of
the source. Second, just viewing some code in IP will not tell you how to
type it in. This problem may be easily solved in the future by having inten-
tions provide “show me your type-in” commands, which would explain to
the programmer how to use a given intention.

in math books are too ambiguous to be parsable. This is not a
problem in IP because the rendering of some code can be ambigu-
ous, but the underlying source is not (the rendering shows less
information than what’s in the source). And you can use com-
mands to enter unambiguous source that is rendered ambiguously.

The IP source rendering also allows you to embed graphics
and graphical notations in your programs. A view containing
graphics can also be provided as an alternative view to a textual
view. For example, Figure 11-16 and Figure 11-17 show two alter-
native renderings of the same C function implementing some logi-
cal formula. One rendering uses the usual C notation, and the
other one uses a graphical notation based on a circuit with logical
gates. As Figure 11-18 shows, textual and graphical notations can
also be easily mixed. You can readily imagine that you can use
these capabilities to provide general-purpose and domain-specific
graphical modeling notations.

Another interesting capability of the IP editor is shown in Fig-
ure 11-19, where a bitmap (in this example, one representing an
icon) is passed as an argument and its actual contents is rendered
in the source (see the little bitmap passed to __BitmapName() in Fig-
ure 11-19). This is much more expressive than passing a literal



array containing the numbers that represent pixels. Furthermore,
you can simply capture the bitmap somewhere from the screen and
paste in the source.

IP rendering also allows you to enrich programming notations
with any kind of GUI controls. A very common kind of controls
used in programming are tables (e.g., decision tables). An example
of a special table control used in program source is shown in Fig-
ure 11-20. This table is used to manage the specifications of menus
for the GUI of the Microsoft Outlook product.

The IP editor lets you embed references to declarations in a
comment. For example, a comment about some function may con-
tain references to other similar functions. References basically
amount to hyperlinks because you can use the go-to-declaration
button to jump to the declaration being referenced. References
embedded in comments are rendered underlined. This is shown in
Figure 11-21. For example, one of the comments starts with
gregsh:, where gregsh is a reference to the declaration declar-
ing the developer Greg, who is the author of this comment. The
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Figure 11-16 C-like, textual rendering of logical expressions



reference FotTypeface is a reference to the declaration of the func-
tion FotTypeface(). The important point about references embed-
ded in comments is that—just as in the case of references
embedded elsewhere—you don’t need to update their names after
changing names of the declarations being referenced (e.g., after
changing the name of the function FotTypeface()).

The ability to provide alternative renderings for a single source
is in the spirit of aspect-orientation and is a useful addition for
implementing aspects by separate modules. You can use alternative
renderings to show certain aspects and suppress other aspects of
the source. For example, you can use alternative renderings to sup-
press the display of exception specifications in function signatures,
when needed. It is important to note that not only can we compute
aspectual views on the underlying source graph, but also support
their editing. In general, renderings can provide radically different
views of the source including program visualization and metrics.
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Figure 11-17 Graphical rendering of the logical expressions from
Figure 11-16

Aspectual views



Another exciting use of alternative renderings is the possibility
of rendering intention names in different languages, such as English
or Chinese. This is illustrated in Figure 11-22 and Figure 11-23.
This feature is very useful in the age of globalization because many
organizations already engage in program development that involves
teams from different countries (e.g., outsourcing the development
of system components to different countries).
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Figure 11-18 Example of mixing textual and graphical notations

Figure 11-19 Example of passing a bitmap constant as an argument

Renderings in
different
languages
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NOTE

We said earlier that important information that would otherwise make a
great comment can often be captured in a machine processable way by
introducing appropriate intentions. So you may ask why we still need com-
ments. There are several reasons why comments are still useful. First, you
often want to communicate something informal to other humans (e.g.,
“this line of code makes me feel so proud . . .”). Second, you may not have
the time to state something formally (i.e., in a machine-processable way).
Third, the intentions needed to state the information formally may be
unavailable and defining them may not be an option. Why? (1) Maybe you
don’t have the time or skills. Remember: Intentions have to be well
designed, and its not everyone that should introduce new intentions, but
only intention designers, that is, language and library designers. (2) Or the
intention could be so unique (i.e., of low reusability) that it would not be
worth investing the effort. There is one important point about comments in
IP, though: You can always come back and rewrite them in a machine-
processable form when the necessary intentions become available.

Figure 11-20 Example of source containing a table control
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Most renderings display only a select part of the information
contained in the source. For example, even the “Hello World” pro-
gram shown in Figure 11-6 does not show all the detail contained
in the underlying source graph. However, IP provides a special ren-
dering called the core view, which shows more details of the
underlying source graph. Intention programmers can use this ren-
dering to debug the underlying program representations, but the
intention users need not worry about it. The “Hello World” pro-
gram in the core view is shown in Figure 11-24.

Extending the IP System with New Intentions

When you write an application, you simply use the general-purpose
and domain-specific intentions provided by the extension libraries
you’ve loaded into the IP system. Developing extension libraries is a
different activity than application programming, however. This
activity involves utilizing extension APIs and adhering to special IP
protocols (e.g., the reduction protocol discussed in Section 11.5.5)
and requires language design and implementation skills.

When implementing new intentions, you usually declare them
in a separate file called the library interface. Next, you implement
the reduction, rendering, type-in, debugging, and other methods in
one or more other files. In most cases, you’ll need at least the

Figure 11-21 Example of comments with references to declarations

Core view

11.4.3

Library
interfaces and
extension DLLs



reduction, rendering, and type-in methods. The methods use the
extension APIs, that is, the reduction API, rendering API, type-in
API, and so on. The files containing the methods are compiled into
an extension DLL. You would usually package related intentions,
for example, intentions implementing a domain-specific notation,
in a single DLL. The interface file and the extension DLL get
handed out to the application programmers. When the application
programmers import the interface module of an extension library
into their application project, the corresponding extension DLL
gets loaded automatically into their IP system. The DLL contains
the code needed to type in, render, and reduce the application pro-
gram using the new intentions. The DLL can also contain special
commands for working with the new notation (e.g., typing aids,
analysis tools, and so on), which can automatically be made avail-
able on the IP menu bar after loading the DLL.

Let us take a look at the steps performed by a typical reduction
method. A reduction method first analyzes the context of the tree
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Figure 11-22 A C function rendered in English
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Figure 11-23 The C function from Figure 11-22 rendered in Chinese

Figure 11-24 The “Hello World” program from Figure 11-6 rendered in the
core view



element it was called on. It checks to see if the structure of the sub-
tree is correct, so that it can then reduce it. It basically looks for
syntax and semantic errors. If it discovers any errors, it attaches
error annotations to the locations in the source where they are pre-
sent. Even if there are no errors, it will still attach some other
information gained in the analysis to various tree nodes in the
source, so that other transformations can take advantage of it in
later phases. In general, intentions can gather information from
remote corners of the program in order to do various optimiza-
tions. The subtree is then reduced by adding lower-level represen-
tations to it (as discussed in Section 11.5.5). Finally, the reduction
method returns the reduced representation of the source.

Accessing and modifying the source tree is done using the tree
editing API, which consists of basic operations, such as create
node, set the link to declaration, add an operand, and so on. In
addition to this low-level tree editing API, there are also some
higher-level facilities, such as pattern matching functions and
quote constructs. The latter allow a compact definition of trees
used for matching or reduction. As an example, assume that we
are implementing an intention for representing matrices, that is,
the type MATRIX. Furthermore, assume that we design the type so
that the application programmer can declare a variable of type
MATRIX and annotate the type with configuration parameters, such
as the memory allocation strategy and the shape of the matrix. For
example, the application programmer could declare a dynamically
allocated, rectangular matrix as follows:

configuration(dynamic, rectangular) MATRIX m;

The implementation of MATRIX would, among other methods,
require a reduction method for declarations with type MATRIX.
Depending on the configuration parameters, this method would
reduce a variable declaration with type MATRIX to a variable decla-
ration whose type is a C array (for statically allocated matrices), or
a C struct containing the number of rows and columns and a
pointer to the matrix elements (for dynamically allocated matri-
ces), or some other C data structure. The core of this reduction
method could look like this:

HTYPE htype;

if (matrix_description.allocation == dynamic &&

matrix_description.Shape == rectangular)

{

htype = `struct

{
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int rows;

int cols;

$htypeElement* elements;

};

} else { ... }; //other cases

htype is a handle to a tree element that represents the type to
which MATRIX gets reduced. matrix_description is a struct that
was created during the analysis of the configuration parameters of
the matrix declaration shown earlier. The statement inside the if-
then branch assigns htype a tree representing a C struct. The struct
contains the number of rows and columns and a pointer to the
matrix elements. Instead of constructing this tree using the low-
level tree editing API (i.e., calling the operations to create a node,
setting the reference to declaration, adding the operands, and so
on), we simply write the C code to be created preceded by the
quote operator `.9 Once we have the tree representing the C data
structure, we would attach it to the original source. Next, we
would reduce the C intentions by calling their reduction methods.

Using the tree editing API and the simple metaprogramming
constructs, such as quote and unquote, are still quite low level and
tedious. However, you can implement more sophisticated, declara-
tive notations for defining language extensions and provide them
to intention programmers as extension libraries.

Advanced Topics
In the following five sections, we’ll describe some more advanced
concepts including questions, methods, and reduction. These top-
ics are relevant to implementers of extension libraries, not to appli-
cation programmers.
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Quote and
unquote
operators

9. The quote construct suppresses the standard reduction of the quoted code.
Instead, the quoted code is reduced to code, which, when executed, actually
creates the quoted source tree. The IP quote facility is analogous to the quote
found in Lisp.

NOTE

Please note that htypeElement is a variable computed elsewhere and is
used in the quoted code. In order to use its value, the variable is preceded
by the unquote operator $.
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Questions, Methods, and a Frameworklike Organization

In IP, methods are invoked by asking questions of nodes. Ques-
tions are polymorphic operations on tree elements. Similar to poly-
morphic operations in object-oriented languages, you can have
several different methods (i.e., implementation codes) associated
with a single question (i.e., polymorphic operation). If you ask a
node a question, there is a built-in lookup mechanism that will find
the appropriate method to answer the question.

You can implement new intentions by declaring them and
implementing the methods that define their semantics, appearance,
and so on. As already discussed, the declarations and the methods
go into separate modules. The module containing the declarations is
called the library interface. The module with the methods gets com-
piled into a dynamic-link library (DLL), called an extension DLL,
which can be dynamically linked to the IP system to extend it. If you
want to use the new intentions in a program, you import the inter-
face module, which will trigger the IP system to automatically link
the corresponding extension library to itself. The system will now
use this library to render, compile, and debug the instances located in
your program that refer to the intentions in the declaration module.

When implementing extension libraries, you use a set of stan-
dard APIs defined by the IP system for rendering, type-in, reduc-
tion, versioning, and so on. These APIs consist of (1) declarations of
procedures that you can call and (2) questions that the system calls
and you provide methods (i.e., implementations) for. The questions
are the entry points where user-defined code for rendering, type-in,
reduction, and so on gets called. The system provides default imple-
mentations of these questions (i.e., default methods), which you can
override. For example, the default implementation of the rendering
question (i.e., the question returning the display representation of a
source tree) is to display source trees in a functional notation. So,
the tree in Figure 11-2 would be rendered by the default rendering
method as follows: +(x,x). If you want it to be rendered as x+x, you
need to override the default rendering method for references to +.

An example of a question for which you usually need to pro-
vide your own methods when implementing new intentions is the
reduction question, that is, the Rcode question. The system asks
this question of the root node of a user program in order to initiate
its reduction. The result of this question is the reduced version of
the program, that is, a graph containing only instances of the
R-code intentions for a given target platform.

As you can see, the IP system is structured like a framework
making calls to default and user-defined methods, where the latter

Rcode question
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are located in extensions libraries. This is illustrated in Figure
11–25.

In addition to standard, system-defined questions, extension
libraries may also define their own new questions. For example,
the implementation of the C intentions defines the question Type,
which returns the type of an expression. Methods implementing
the Rcode question ask the Type question during the static analysis
of the C code being reduced.

Source-Pattern-Based Polymorphism

As stated earlier, if you ask a node a question, there is a built-in
lookup mechanism that will find the appropriate method to
answer this question. Which method gets selected depends on the
structure of the source graph the node lives in. This is so because
you can register different methods to answer a given question for
different node patterns in the source graph. We say that questions
are polymorphic on source patterns.

When a node is asked a question, the system first checks to see
if there is an appropriate method registered for the node pattern
the node lives in. If not, the question is resubmitted to the declara-
tion of the node. This is a kind of a method inheritance mechanism
specially designed for source graphs.

It is important to be able to register methods for different
source patterns because we want to define different behaviors for
different constellations of instances of intentions. For example, we
need different code to display and compile:

♦A reference to a declaration of a type
♦A declaration with that type
♦A reference to a declaration with that type
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Extension library
implementing 
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Figure 11-25 The IP system calls extensions libraries
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Suppose that you want to implement the type int. First, you
need to declare int, and then implement and register the Rcode
methods (i.e., the methods answering the Rcode question) for the
following tree patterns: references to int, declarations with type
int (i.e., declarations of variables of type int), and references to
declarations with type int. You don’t need to implement any ren-
dering and type-in methods because the default ones are good
enough for int.

The system defines the question Rcode as follows:10

Rcode(linkAsking, phteRcodeRoot)

This question returns the reduced version of the subtree it is
called on. The first argument, that is, linkAsking, is the link that is
asking this question. (When a node asks its neighbor the Rcode ques-
tion, you can think of the question as traveling along the graphlike
or treelike link connecting both nodes. This is the “link asking a
question”.) The second argument, that is, phteRcodeRoot,11 is a
pointer to where the method activated by the question will store the
result, that is, a handle to the root of the reduced tree. A method
implementing the question can refer to the node it operates on using
hteThis, which is similar to the pseudovariable this in C++.

As stated previously, you need to implement and register meth-
ods handling this question for different source patterns. For exam-
ple, you need a method handling the question Rcode for references
to declarations with type int:

<ref_to.dcl_with_type_that_is.int>::Rcode(linkAsking, 

phteRcodeRoot)

{

... //implementation of the method

}

Let us take a look at the whole picture (Figure 11-26). The
user program (on the left) contains a declaration with type int, a
reference to the declaration of int, and a reference to the declara-
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10. The code samples shown here are slightly simplified.
11. The naming conventions used in the IP system are called Hungarian nota-
tion [SM91]. For example, “phte” stands for “pointer to a handle to a tree
element.” (A handle is a machine-independent implementation of a pointer.)
Hungarian notation was invented by Charles Simonyi and propagated
through the Microsoft Windows API.



tion with type int. The library in the middle implements int. First,
there is the declaration of int, which would be located in the inter-
face part of the library. This interface part would be imported by
the user program (like a header file in C). Then you have the three
methods implementing the Rcode question for the three different
patterns involving instances of int. These methods would be com-
piled into an extension DLL and dynamically linked into the IP
system. When you compile the user program, the system will call
the corresponding reduction methods from the extension DLL.

Methods as Visitors

In IP, a method is not simply a piece of code called on one node,
but rather it has the form of a visitor traversing the nodes of the
pattern the method is registered for. The visitor may execute some
user-defined code on each node being traversed. The accumulated
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Declaration of a
variable of type
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Reference to a 
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question Rcode for different 
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<dcl_with_type_that_is.int>::Rcode(...) 
{...}
<ref_to.dcl_of.int>::Rcode(...) 
{...} 
<ref_to.dcl_with_type_that_is.int>::Rcode(...) 
{...}

Figure 11-26 An implementation of an intention consists of a decla-
ration and methods registered for different source patterns involving
instances of this intention

11.5.3



data is passed along the traversed path. The implementation of
methods as visitors is not surprising because a large portion of
code of any compiler deals with traversing ASTs.

There are cases where you only need to collect data from one
node. For example, consider the question Type, which returns the
type of an expression. When implementing the addition operator
+, you need to implement a method handling this question for ref-
erences to +. The method will be a visitor visiting only the refer-
ence node. During this visit, it will ask the question Type of the
children of this node and then compute the return type. However,
there are also cases where a visitor needs to traverse several nodes
and execute different code on each of them.

Asking Questions Synchronously and Asynchronously

Questions can be asked synchronously or asynchronously. When
you ask a question synchronously, you give the control to the sys-
tem, and when the call returns, you have the answer. For example,
a node can ask its neighbor the Rcode question as follows:

AskQuestion("Rcode", linkAsked, phteRcodeRoot);

In this call, linkAsked is the link connecting the node asking
the question to the neighbor being asked, and phteRcodeRoot is the
return parameter.

Alternatively, you can ask questions asynchronously. In this
case, you first submit a question, continue with your work, and later
ask for the result, which may cause blocking until the system has
answered the question. The idea of asynchronously asking questions
is that you can first submit several questions and then, when you
block waiting for the first answer, the system may compute the
answers to all the submitted questions in any order it chooses. Thus,
you should call questions asynchronously whenever the order of
answering the questions is not relevant to your code. For example,
the method answering the question Type for a reference to + will ask
its children the question Type, and then compute the resulting type.
Because it does not matter whether we first ask the left child or the
right child, both questions are asked asynchronously:

//submit the first question and return a handle to it

hsq1 = SubmitQuestion("Type", hteLeftOperand);
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As of this writing, the IP visitor mechanism is implemented using closures.



//submit the second question and return a handle to it

hsq2 = SubmitQuestion("Type", hteRightOperand);

//get the results

WaitForQuestion(hsq1, phteLeftType); //at this point the 

//system may compute

//the answer to hsq1 and

//then hsq2 or

//the other way round

WaitForQuestion(hsq2, phteRightType);

The ability to delegate the order of answering questions to the
system is very important because it promotes the composability of
extension libraries. We’ll explain this in the following section. It
also creates the opportunities for parallel execution on multi-
processor machines.

Reduction12

As stated earlier, reduction is the process of transforming source
trees into lower-level trees. It corresponds to compilation in con-
ventional programming environments. Reduction is initiated by
the system when it asks the question Rcode of the root node of a
user program. This question computes and returns the R-code rep-
resentation of the program for a given platform. This computation
involves asking the Rcode and many other questions of other nodes
in the source. In particular, these questions check the structure of
the program source for correctness, perform optimizations, and
generate the R-code representation. It is important to note that
optimizations in IP can be and often are domain-specific because
domain-specific abstractions provide their own reduction and opti-
mization methods. Furthermore, optimizations in IP may inspect
remote parts of the source tree, that is, we can have optimizations
of wide scope. Of course, the process of reducing a higher-level
abstraction can take advantage of the existence of lower-level
abstractions. For example, the reduction method of a new high-
level abstraction may first generate its implementation in
C-abstractions, and then ask this implementation for its R-code.

The reduction process is governed by a few general principles.
First of all, reduction methods are not allowed to delete links and
nodes in the source, but only to add new links and nodes. The idea
is that any new information computed by the reduction methods
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12. This section describes the IP reduction protocol as of this writing. In par-
ticular, the version described here supersedes the one described in [ADK+98].
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(e.g., typing information, intermediate representations, R-code
representations, and so on) has to be attached to the source. If you
ask a node a question for some representation, the question will
first check to see if the representation has already been computed
and is present in the source, and then it would return the existing
answer or compute it if no answer was available. In other words,
you can think of reduction as a process of growing the source
graph until it incorporates its low-level R-code implementation. At
that point, the source graph contains the original source, all the
intermediate representations, and the R-code implementation. By
not deleting any information during reduction, the process is
monotonic, and you can control its progress. If the reduction
methods were allowed to delete information, you basically could
not always guarantee that reduction would terminate. An example
of attaching lower-level representations to the original source is
shown in Figure 11-27. This figure shows the reduction of while to
an implementation using if and goto. The new implementation
(shown in gray) is simply attached to the original tree. Because the
condition of if is the original condition of while and the original
body statement of while is also part of the body statement list of
if, both trees share these statements. This is achieved through spe-
cial docking points provided by treelike links.

The second principle is that nodes are only allowed to directly
access their local neighborhood. More precisely, a method execut-
ing on a node is allowed to add links only to this node and access
only the nodes to which the original node has direct links to or the
nodes that were passed as parameters to the method. If a method
needs any information from any remote nodes or needs to add
links to remote nodes, it has to ask questions of their own direct
neighbors, which may need to ask questions of their neighbors,
and so on until the target nodes are reached. The idea behind this
principle is that, because the question mechanism crosses the sys-
tem, the system can automatically monitor which nodes acquire
information from or add links to which other nodes. This way, as
the reduction proceeds, the system builds a map of dependencies in
the source (which is basically the record of who asked which ques-
tion of whom). You’ll see in the following paragraphs what this is
good for.

The third principle is that the answer to a question may never
change during the reduction. Even if a node asks a particular ques-
tion of some other node only once, it has to be guaranteed that if
the node asked that question again, it would get the same answer.
This is not simple to guarantee at all because methods can add new
links, that is, they can have side effects. For example, if a node
asked some other node about its number of children and got the
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answer 3, this answer is not allowed to change and effectively no
other method is allowed to add any children to that node once this
question has been asked. The system checks this principle automat-
ically. Whenever new links are added to a node, all questions that
were run on this node are automatically reevaluated by the system
to check to see if the answer is still the same. If the answers are dif-
ferent, the previous answers to these and all other questions calling
these questions are invalidated. As a result of this invalidation, the
system rolls back the reduction to the point where no answers are
invalid and then tries asking the questions in a different order.
Please remember that you can ask several questions asynchronously
(see Section 11.5.4)—that’s why the system has the opportunity to
answer some questions in an order selected by the system. In other
words, reduction involves a search for an order of answering ques-
tions that does not lead to the invalidation of any previous answer.
In our example, if the question trying to add an extra child and the
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while (x<5) TEST: if (x<5)
{ ++x;
  goto TEST;
}
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Figure 11-27 Reduction of while by attaching a lower-level repre-
sentation using if and goto. Please note that only treelike links are
shown and each node except for TEST (which is a declaration) and 5 is
represented by the name of its declaration.



question about the number of children were asked asynchronously,
the system would make sure that the question adding a child would
run before the question about the number of children.

The basic idea behind this whole reduction protocol is that a
method can acquire anything it needs to perform its job through
asking questions, and it is guaranteed that the answers to the ques-
tions it asks remain valid and won’t be silently invalidated by some
other method. Because nodes can acquire information from or
modify remote nodes only through asking questions, and the
answer to a question cannot change, the nodes actually acquire a
view on the source that is static throughout the whole reduction
process. In other words, the local changes performed by a method
occur based on a view of the source that is still valid at the end of
the reduction. Thus, when a method starts its execution, it can
basically assume that the source already has its final form except
for the additions to be made by this method.

The reduction protocol is designed to support combining
extension libraries from different vendors. By asking questions
asynchronously, you avoid overspecifying the order of invoking
transformations. This is very useful whenever you want to extend
or modify the compilation of certain instances of intentions, for
example, by plugging in an extension library that optimizes certain
patterns in the intermediate representations generated by other
libraries. The new extension library could require a specific order
of transformations, so that it can view all these patterns at one
point and transform them. In other words, some extension
libraries may constrain the set of possible transformation orders of
other libraries. Because libraries support sets of alternative trans-
formation orders rather than enforcing just one particular order,
there is a higher probability that there is a transformation order
that works for a composition of several libraries.

Of course, it is possible that the sets of transformation orders
supported by several libraries are disjoint, meaning that no order
can be found and the reduction process fails. However, this can
only happen whenever the libraries want to transform instances of
the same intentions and do it in incompatible ways. Such incom-
patibilities have to be resolved by the vendors of these libraries.
The system at least guarantees that no garbage code will be gener-
ated due to such library interaction.

In order to minimize the search for valid transformation orders
during reduction, future releases of the IP system will allow
libraries to specify preferred orderings of transformations that are
more likely to yield success.
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The Philosophy behind IP
Why Do We Need Extendible Programming Environments? or
What Is the Problem with Fixed Programming Languages?

Most real-world applications require many domain-specific abstrac-
tions. There are at least two obvious alternative ways to deal with
this requirement. One solution is to use a general-purpose program-
ming language with abstraction mechanisms, such as procedures or
objects, which you can use to implement your own libraries of
domain-specific abstractions. This is the conventional and widely-
practiced solution. The second solution is to provide one comprehen-
sive application-specific language for each kind of application you
need to build. By saying a comprehensive application-specific lan-
guage, we mean that the language contains dedicated language fea-
tures for representing all the domain-specific abstractions needed for
the given kind of application. It turns out that both solutions have
severe problems, which we describe in the following two sections.

Problems with General-Purpose Languages and Conventional
Libraries
There are four main problems with the “general-purpose program-
ming language and conventional library” approach: loss of design
information, code tangling, performance penalties, and no domain-
specific programming support. Let us take a look at each of them.

♦Loss of design information: When you use a general-purpose pro-
gramming language, you have to map domain-specific abstractions
onto the features and idioms of the programming language. The
resulting code usually includes extra clutter and fails to represent
the abstractions intentionally because some of the domain infor-
mation is lost during this transformation. For example, there are
many ways to implement the singleton pattern [GHJV95].13 And
given a particular implementation code only, it is not 100 percent
certain that the intention of the code is to implement the singleton
pattern. This information could be included in a comment, but
such information is lost to the compiler. On the other hand, with
the domain-specific (or application-specific) language approach,
we would provide the special class annotation singleton, which
would allow us to unambiguously express the singleton intention.
The loss of design information makes software evolution
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13. Singleton is an idiom of OO languages for implementing classes that can
have only one instance.



extremely difficult because change requests from the customers are
usually expressed at a higher level of abstraction. Using the gen-
eral-purpose programming language and conventional library
approach, program evolution requires code analysis to recover the
intended abstractions, which, as we illustrated with the singleton
concept, is impossible to automatically perform fully.

♦Code tangling: Programming problems are usually analyzed
from different perspectives and an adequate, intentional encod-
ing should preserve the separation of perspectives (e.g., separat-
ing synchronization code from functional code). As we saw in
Section 8.7, in most cases, achieving this separation requires
domain-specific transformations, but such transformations can-
not be encapsulated in conventional libraries unless the language
supports static metaprogramming.14 In other words, we need to
put some code extending the compiler into the library, but this is
usually not supported by current library technologies. Thus,
when using conventional procedural or class libraries, we are
forced to apply these transformations manually. In effect, we
produce tangled code, which is difficult to understand and main-
tain. We investigated these issues in Chapter 8 in great detail.

♦Performance penalties: The structure of the domain-level specifica-
tion does not necessarily correspond to the structure of its efficient
implementation. Unfortunately, the main property of procedures
and objects is that they preserve the static structure of a program
into runtime. A compiler for a general-purpose programming lan-
guage can only apply simple optimizations because it only knows
the level of that language, but not the domain level. For example,
as we discussed in Section 9.8.1, no compiler could possibly opti-
mize the call EXP(x,2) to the exponentiation function EXP()
(which is implemented using the Taylor expansion formula) into
x*x or optimize EXP(0.5,x*x) into x. In general, a considerable
amount of domain-specific computation at compile time might be
required in order to map a domain-level representation into an
efficient implementation. With the general-purpose programming
language and library approach, no such computation takes place
(again, this would require static metaprogramming).

♦No domain-specific programming support: Domain-specific
abstractions usually require some special debugging support
(e.g., debugging synchronization constraints), special display and
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14. We saw in Chapter 10 that compile-time metaprogramming is possible in
C++ in the form of template metaprogramming. However, template metapro-
gramming, although Turing complete, has only very limited program structur-
ing constructs.



editing support (e.g., displaying and editing pretty mathematical
formulas), and so on. Such support requires that libraries, in
addition to the procedures and classes to be used in client pro-
grams, also contain extensions of the various components of the
programming environment. However, current programming
technologies do not support such extensions.

Problems with Comprehensive Application-Specific Languages
Given a comprehensive application-specific language containing
all language features we need for a given application, we could
implement a programming environment with all the necessary
optimizations and debugging, displaying, and editing facilities.
The language itself would allow us to write intentional, well-sepa-
rated application code. In other words, we would solve all the
problems mentioned in the previous section. Unfortunately, there
are four major problems with this approach: the parsing problem,
high cost of specialized compilers and programming environments,
problems of distributing new language extensions, and problems
of evolving domain- and application-specific languages.

♦Parsing problem: Conventional compiler technology uses parsing
in order to transform program text into the internal program
representation used in a compiler. Parsing poses two problems to
feature-rich and domain-specific text-based languages. First, it is
difficult or impossible to add more and more new language fea-
tures to a language without eventually making it unparsable. As
already discussed, C++ is a good example of a language reaching
this limit (see Section 11.2). Second, the requirement of parsabil-
ity represents quite a restriction on domain-specific notations.
This is so because natural domain-specific notations often do not
reveal all the detail of the underlying model and allow for views
that contain too many ambiguities to be parsable. Mathematical
books are full of notations that are impossible to be directly rep-
resented as conventional, text-based computer languages. As
already discussed in Section 11.4.2, this is caused by the fact that
they do not have to show all the details of the underlying repre-
sentation (which is unambiguous). For example, when editing
text in a WYSIWYG text editor, such as Microsoft Word, one
does not see whether two paragraphs were assigned the same
style (e.g., body text) because they could have the same text
properties (e.g., font size, font type, and so on). An example of
an unambiguous textual representation is the TEX file format
[Knu86], where all the formatting information is included inline
as special commands. However, viewing a TEX file in an ASCII
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editor is not WYSIWYG. Other limitations of textual representa-
tion include being confined to one-dimensional representations,
no pictures, no graphics, no hyperlinks, and so on.

♦High cost of specialized compilers and programming environ-
ments: The cost of developing compilers and programming envi-
ronments is extremely high. For example, in [Vel98a],
Veldhuizen cites Arch Robinson, lead developer of Kuck and
Associates, Inc. (which is the maker of the high-performance KAI
C++ compiler), estimating the cost of compiler development at
$80 and more per line of code (as of 1998). Given such a high
cost, vendors of compilers for general-purpose languages usually
do not have the resources to extend their products with domain-
or application-specific features (e.g., domain-specific optimiza-
tions for scientific computing), which are only useful to a rela-
tively small group of users. Developing dedicated programming
environments for whole domain-specific languages is even more
costly and definitely should not be undertaken by application
developers. The only solution to this economic problem is to pro-
vide a common (meta-) programming infrastructure that can be
reused across different languages and build a third-party market
for specialized language extensions on top of it.

♦Problems of distributing new language extensions: Even if we
extend a language with new features, dissemination of the new
features is extremely difficult because languages are traditionally
defined in terms of fixed grammars and compilers, and program-
ming environments do not support an easy and incremental lan-
guage extensibility. That is why, as Simonyi notes in [Sim97],
new useful features have the chance to reach a large audience
only if they are lucky enough to be part of a new, widely dissemi-
nated language. A good example of such feature are interfaces in
Java. The only problem is that such opportunities are quite rare.
Furthermore, Java is also a good example of a language that is
extremely difficult to extend because of its wide use and the
legacy problem that comes with it. This is also the reason why, as
of this writing, genericity is still not in the language. Another
problem is that just as new features are difficult to add to a
widely used language, bad features that are already in the lan-
guage are difficult or impossible to get rid of.

♦Problem of evolving domain- and application-specific languages:
As Eric Van Wyk pointed out, domains evolve and “may evolve
out of the coverage of any domain-specific language.” As dis-
cussed in the previous point, fixed grammars, compilers, and lan-
guage infrastructures make it difficult to evolve domain-specific
languages to adequately support evolving domains.
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The IP Solution: An Extendible Programming Environment
Fortunately, there is a third way to provide adequate support for
domain-specific abstractions without running into the problems
discussed in the previous two sections. The solution is to use an
extendible programming environment, such as IP, which replaces
the fixed-programming-language view with the idea of configuring
your programming notation by composing active libraries imple-
menting single or sets of language features (i.e., intentions). IP
addresses the aforementioned problems as follows.

♦Loss of design information and code tangling are avoided by pro-
viding domain-specific language extensions, that is, specialized
language constructs that capture your domain-specific abstrac-
tions intentionally. In IP, language extensions are packaged into
active libraries called extension libraries, which you can load
into the programming environment in order to extend it.

♦Performance penalties are avoided by applying domain-specific
optimizations, which are distributed as a part of the extension
libraries.

♦Domain-specific programming support (e.g., domain-specific
debugging, editing, displaying, and so on) can also be provided
as a part of the extension libraries.

♦The parsing problem is solved in IP by abandoning the textual
representation altogether and allowing direct and unambiguous
entry of AST nodes using commands. Furthermore, thanks to
rendering, any kind of notation can be supported.

♦Some of the high development cost of specialized compilers and
programming environments is reduced by providing a common
reusable (meta-) programming platform (i.e., the IP system), so
that only the language extensions themselves need to be pro-
grammed. Furthermore, you can usually reuse a given language
feature with different configurations of other language features.
The interoperability between the language features has to be pro-
vided by the vendors of the language features or frameworks of
language features, which may require special extension libraries
with glue code.

♦Extension libraries represent a convenient and economical means
for distributing language extensions. New features can be added
to the programming environment as the application scales. For
new development, you can easily exclude deprecated features by
simply not loading them (although you can still load them for
legacy code).

♦IP provides a platform for language evolution driven by the
evolution of domains and by market needs. Charles Simonyi
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compares this evolution to the processes found in biological sys-
tems by referring to the future intention market as an “ecology
of intentions” [Sim95].

Moving Focus from Fixed Languages to Language Features and
the Emergence of an Intention Market

As Simonyi notes in [Sim97], with IP we have a major shift of
focus from languages to language features, that is, intentions. Cur-
rently, new language constructs have to look for a host language
and this is quite difficult because the most popular languages are
difficult to extend (this requires updating all the compilers, stan-
dards, manuals, and so on, which are not designed to be
extendible). As we mentioned previously, new features can only
spread through new and successful languages, such as Java. Unfor-
tunately, not only good features reach large audiences this way. If a
bad feature makes it into one of the widely used languages, it is dif-
ficult, or impossible, to get rid of it. The situation is very different
in IP: Programming abstractions become true entities with their
own “life.” They have to survive based on their own merits. They
encapsulate the knowledge they need to be displayed, compiled,
and debugged in different contexts and can be easily distributed as
extension libraries.

The research on design patterns and idioms gives a further
motivation for the need of change of focus from languages to pro-
gramming abstractions (see e.g., [GL98]). The pattern work
attempts to classify new useful domain-specific and general pro-
gramming abstractions and mechanisms. There is the conviction
that programs are essentially assembled from these fundamental
building blocks. On the other hand, as more of such patterns are
identified and documented, it becomes increasingly difficult for
any language to express them adequately. Few of these abstrac-
tions make it into languages. For example, dynamic polymorphism
or inheritance require implementation idioms in C, but they are
part of OO languages. However, hardly any existing language
could keep up with the explosion of new abstractions.

The vision of IP is the emergence of an intention market. In
such a market, there will be intention vendors, who will develop
new intentions and will have to make sure that these intentions
cooperate whenever there is a need for it. Obviously, there will be
different categories of vendors, for example:

♦Vendors providing frameworks of intentions implementing gen-
eral purpose programming and modeling notations.
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♦Vendors providing frameworks of intentions implementing
domain-specific programming and modeling notations.

♦Smaller vendors providing nifty, innovative extensions to the
existing notations.

Given such a market, language abstractions are no longer “look-
ing for” host languages, but rather for customers [Sim97]. With all
the critique of current programming languages, they are still very
important from the IP viewpoint: They are sources of useful lan-
guage features and notations. As Simonyi predicts in [WTH+99],
the development of the intention market will probably start with
vendors providing extension libraries implementing existing pro-
gramming languages (such as Java, C++, COBOL, and so on), and
then supplying useful additions to them (e.g., genericity, precondi-
tions and postconditions, procedure specialization, and so on).
The next step will be the development of domain-specific inten-
tions.

It is important to note that IP creates an enormous develop-
ment potential in several areas including novel debugging mecha-
nisms, specialized rendering and editing support, domain-specific
optimizations, language-specific refactoring support and so on,
which goes much beyond the mere evolution of programming lan-
guages we have today. This is so because it gives third-party vendors
a common infrastructure and a common internal source representa-
tion for implementing and distributing language extensions and lan-
guage-based tools, which they didn’t have before.

Intentional Programming and Component-Based Development

Intentional Programming provides advanced support for Compo-
nent-Based Development (CBD). As a particular focus, in addition
to promoting building applications from reusable, replaceable
parts, IP enables automating their assembly in unique ways.

Now, you may wonder: What is the relationship between IP
and component standards, such as CORBA, COM, or JavaBeans?
First, let us take a look at the similarities (for brevity, in the rest of
this section, we refer to CORBA, COM, or JavaBeans components
as just “components”).

♦Both intentions and components are building blocks used by
application programmers to build applications.

♦Just like intentions, components may also have design-mode
methods used to enter, visualize, and manipulate them at pro-
gramming time.

♦Both intentions and components support visual programming.
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♦They both have globally unique identifiers allowing their global
distribution.

However, there are also several important differences. In con-
trast to IP, most CBD environments based on the CORBA, COM,
or JavaBeans standards have the following deficiencies.

♦They only allow you to create assemblies of components whose
structure will be preserved into runtime. In other words, trans-
formations implementing domain-specific optimizations and
weaving and distributed as part of the components are not sup-
ported. This usually leads to poor separation of concerns and/or
poor runtime performance.

♦They do not support domain-specific debugging capabilities dis-
tributed as part of the components.

♦They are not capable of mimicking the traditional, textual way
of programming using tree editing like IP does, that is, they only
provide visual programming as a direct way to manipulate com-
ponents. (Alternatively, you can use traditional textual, scripting
languages to glue components, but such code has all the prob-
lems of traditional programming, for example, it has no ade-
quate support for refactoring, extendibility, and so on).

♦They still need conventional, textual languages to code the compo-
nents. In contrast, IP does not have this conceptual discontinuity:
Everything (including intentions) is coded using intentions and all
the source can enjoy all the advantages of intentional encoding.

Put another way: If you implement a component-based pro-
gramming environment that:

♦Contains a code-transformation framework for generating efficient
code from design-time assemblies of components and that supports
the integration of independently developed transformations

♦Provides a special support for metaprogramming including
debugging of transformations

♦Provides a set of standard APIs for extending any part of the
environment (including the debugger)

♦Supports not only visual programming, but it also views tradi-
tional, textual language features as components and perfectly
mimics the traditional type-in of such features and

♦Is completely implemented in itself, that is, it does not need any
traditional programming technology to implement any of its
components

then you’ve got another IP.
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Frequently Asked Questions

IP represents quite a radical paradigm change departing from
many current programming traditions. Therefore, it isn’t surpris-
ing that there are a number of questions frequently brought up in
discussions about IP.

Q1: General-purpose programming languages are commonly
understood. On the other hand, each new domain-specific nota-
tion needs to be learned first. Isn’t the cost of learning new
domain-specific notations prohibitive?
If you code a library of domain-specific abstractions in a general-
purpose programming language, the library user will need to learn
the domain concepts behind the library in order to be able to use it.
The understanding of the general-purpose programming language
will be of little help in understanding the domain concepts. Thus,
learning a conventional library of domain-specific abstractions is
much the same as learning a new domain-specific language. By using
a domain-specific language instead of the conventional library
approach, you get many advantages, however. Problems expressed
in a domain-specific language are often more concise and contain
less clutter. An encoding in a domain-specific language is more inten-
tional because you don’t have to take the detour of coding idioms
and patterns to express key domain concepts, that is, domain knowl-
edge doesn’t get lost. Finally, you get all the advantages of domain-
specific support including domain-specific optimizations, natural
notations, domain-specific error reporting and debugging (see Table
8-2 in Section 8.7.1). For example, the STL [MS96] is famous for
causing long and cryptic error reports (due to the long and compli-
cated identifiers generated during template instantiation) when you
have an error in your application code using STL. With domain-spe-
cific error support, the library would actually be able to issue clear-
text, domain-specific compile-time error reports telling you what is
wrong with the way you used a given container in your program.

It is often said that a common general-purpose language
promotes communication between developers. Yes, this is true for
the general-purpose programming mechanisms it provides. But,
this advantage can be easily carried over to domain-specific, exten-
sible languages: If necessary, a domain specific notation can be
based on widely known general-purpose programming mecha-
nisms. Furthermore, just as standard libraries help to foster a com-
mon communication basis beyond the syntax of their
implementation language, standard domain-specific notations will
emerge and serve the same purpose.
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Q2: Using simpler languages is easier and makes clearer pro-
grams. IP propagates feature-rich languages. Isn’t programming in
feature-rich languages more complicated and doesn’t it result in
more complicated programs?
First, we need to be clear about our goal: Do we want to have a
simpler language or one that simplifies the task of writing a given
program? Probably the latter. Assembler is a simple language with
few language features, but writing and maintaining complex
assembler programs can be a nightmare. We definitely want to use
an optimal set of language features for a given problem, that is, we
don’t want to use more features or more complicated features than
necessary. (As Albert Einstein once said: “Make it as simple as pos-
sible, but no simpler than that.”) Unfortunately, simplicity is often
confused with primitiveness.

An intense discussion about simplifying languages has been
sparked by Java, whose simplicity compared to C++ is considered
its main advantage. Java definitely makes programming certain
kinds of applications simpler (e.g., due to its automatic memory
management). However, because certain useful general-purpose
features are missing, some classes of problems are not as easy to
code in Java. For example, due to missing genericity, programming
with containers is quite a tedious task. Furthermore, the intention-
ality of the code suffers. For example, you cannot express enumer-
ations in Java intentionally—you have to simulate them using
constants, and therefore, you don’t get specialized type-checking as
in C++ (this and other painful omissions from Java are discussed in
[Gil99]). This is not a critique of Java as a language. First, Java can
be seen as a useful language redesign based on other object-ori-
ented languages. Language redesign and evolution is very impor-
tant and extendible programming environments like IP just make it
simpler. Second, Java is a fine, well-selected set of features includ-
ing some new useful features (e.g., interfaces). And it should be
seen as that. That is, you can use it for a given problem if it fits it
well, but you should be able to extend it if you need to. Extendible
programming environments do not prevent you from using a well-
selected set of features for your problem. In fact, they make it sim-
pler because you can also add problem-specific features, which are
generally missing in general-purpose languages, but can greatly
simplify the programming task. Furthermore, as your application
scales and evolves, the “set of optimal languages features” also
changes. If you are using an extendible programming environment,
you can evolve this set more easily.

Another argument on language simplicity brought up by Guy
Steele in his excellent and entertaining OOPSLA’98 keynote
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[Ste98] is that simple15 languages enforce clarity and promote
understandability by using fewer special terms and being more ver-
bose (i.e., by showing more of the definition of terms). In other
words, he supports the standpoint that domain-specific languages
are cryptic. (As Mason Cooley once said: “Jargon is any technical
language we do not understand.”) Yes, domain-specific languages
are cryptic to those that do not know a given domain. But then,
they should either learn it or should not be programming in that
domain. We feel that only beginners can be helped with somewhat
more verbose encoding. However, if this is the goal, then you can
provide a verbose rendering of the code in IP (i.e., the intentions
can be rendered in a more verbose fashion, showing more of their
definitions). By using verbose encoding (rather than just verbose
rendering), however, you loose design information because you
don’t get unique handles on the important domain concepts in the
code, but rather code patterns representing them. Finally, to
experts, verbose renderings are awkward and annoying.16

At last, what can be more simple to use than a domain-specific
representation, which was specially designed to make the task at
hand simpler?

Q3: Won’t letting any programmer extend a language create a
notational havoc?
The problem of opportunistic language extensions is pertinent to
languages with an extensive, built-in support for metaprogramming,
such as CLOS or Smalltalk. Such languages make it easier for an
application programmer to include metacode implementing some ad
hoc language extensions directly in the application code. The prob-
lem is that, although metacode makes the base code simpler, it is
usually itself inherently more complex, harder to debug, and errors
in the metacode often have a more severe impact on a system than
errors in the base code. On the other hand, well-designed and
reusable metacode can greatly simplify application development.

The situation in IP is quite different than in languages with
built-in metaprogramming capabilities. This is because IP makes a
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clear separation between programming and metaprogramming.
Application programmers use IP together with general-purpose
and domain-specific extension libraries that optimally support
their job. Writing language extensions (i.e., extension libraries) is
a separate and completely different activity than application
programming. It involves utilizing extension APIs and adhering to
special IP protocols and requires language design and implementa-
tion skills. Developing extension libraries will be the business of
library vendors, not application developers.

Just as standard, conventional libraries emerge in different
domains today, standard domain-specific notations will emerge.
(Many fields already have their domain-specific notations, IP will
just help to implement them as sharable and embeddable sets of
programming abstractions.) In the presence of an intention mar-
ket, developers will have access to high-quality and sophisticated
domain-specific intentions, so that the temptation to invent their
own ad hoc solutions will diminish. An intention market will pro-
mote strong specialization, which will allow us to build systems of
greater quality and complexity.

Finally, having a common platform for language extensions
will help us to eliminate “islands of insulated domain- and applica-
tion-specific languages,” which are common today.

Q4: How about the interoperability of extension libraries? Doesn’t
the problem of feature interactions (i.e., adding a new feature may
easily break the language) render extending programming lan-
guages impractical?

Before answering how IP addresses the problem of feature interac-
tions and what the challenges are, let us first take a look at the two
possible kinds of language extensions.

♦Encapsulated language extensions: Encapsulated language exten-
sions do not affect the semantics of the language features of the
language being extended. Technically, this means that an encap-
sulated language extension does not contribute transformations
that would participate in the compilation of the language fea-
tures in the language being extended. An example of such an
extension is embedded SQL, where the compilation of the host
code (e.g., written in Java) and the embedded SQL code are two
different activities. The only requirement is that the embedded
SQL code returns values of types understood by the host lan-
guage. Composing encapsulated language extensions is analo-
gous to composing well-encapsulated components (such as
JavaBeans, COM, or CORBA components).

Kinds of
language
extensions
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♦Language extensions with external influence: Language exten-
sions with external influence affect the semantics of the language
features of the language being extended. For example, a language
extension with external influence could contribute wide-scope,
domain-specific optimizations, which also transform instances of
the language features of the language being extended. Other
examples of features with wide influence are evaluation mode
(eager versus lazy evaluation), exception handling, and memory
management. In other words, language extensions with external
influence have an aspect-oriented character.

In the context of language extensions, we can have three kinds
of feature interactions.

♦Syntactic feature interactions: A language extension could intro-
duce parsing ambiguities and make the resulting language
unparsable.

♦Semantic feature interactions between encapsulated language
extensions: This kind of feature interactions is the same as fea-
ture interactions between conventional, encapsulated compo-
nents (e.g., JavaBeans, COM, or CORBA components).

♦Semantic feature interactions involving language extensions with
external influence: These are the hardest kind of interactions to
deal with. It involves coordinating transformations across sev-
eral components (possibly from different vendors).

Now, we can take a look at how IP helps to resolve each of
these three kinds of feature interactions.

Kinds of
language feature
interactions

11.6 The Philosophy behind IP 563

NOTE

It is important to realize that “components with metaprogramming capabili-
ties = language features.” Indeed, you could build a source tree out of a set of
JavaBeans or COM instances and association relationships. The links to decla-
rations would be the instantiation relationships between the components
and the instances. You could construct this tree in a COM or JavaBeans com-
ponent builder. If the component hierarchy is deployed as is (i.e., the struc-
ture of the components is preserved into runtime), you’ve got the typical
functionality of a component-based development environment. However, if
the components are asked to generate code and perform transformations,
you can think of each of the components as a language feature! Put another
way, the requirement to support traditional components and metaprogram-
ming (i.e., aspectual components, automatic configuration, and so on) blurs
the borderline between components and language features!



♦Syntactic feature interactions: This problem is completely solved
in IP by abandoning parsing altogether.

♦Semantic feature interactions between encapsulated language
extensions: As stated previously, these kind of feature inte-
ractions are the same as feature interactions between conven-
tional, encapsulated components. The usual way of resolving
such interactions is to provide glue code taking care of the
incompatibilities. The same strategy can be applied in IP. But, in
IP, we can do even better than that. Conventional glue code
introduces additional levels of indirections incurring runtime
penalties. With IP, we can apply domain-specific transformations
to eliminate this overhead, that is, we get zero-overhead glue
code. However, it is important to note that this approach often
involves turning encapsulated extensions into ones with external
influence. On the other hand, the latter are the specialty of IP.
Finally, IP gives us another great advantage when it comes to
embedding domain-specific language extensions. For example,
when using a conventional database technology, such as JDBC
(Java Database Connectivity), syntax errors in embedded SQL
queries are not detected at compile time, but at runtime (when
the query is sent to and evaluated by the server). However, if you
implement embedded SQL as a true language extension of the
host language (which is how you do it in IP), syntax errors in a
query will be detected during the compilation of the client.

♦Semantic feature interactions involving language extensions with
external influence: As, stated earlier, these are the hardest kind of
interactions to deal with. This problem involves coordinating
transformations across several extension libraries (possibly from
different vendors). IP addresses this problem with its sophisticated
reduction protocol. As we discussed in Section 11.5.5, extension
libraries may provide partial orderings of transformations and let
the IP system find a valid total ordering for a set of extension
libraries. Expressing language extension in terms of partial order-
ings of transformations rather than total ones increases the chance
that a given set of extension libraries will cooperate. Practically,
this means that an extension library may request a particular
transformation order and will look at some transformation results
of other libraries. Of course, this kind of library interaction (i.e.,
where transformations from different vendors try to reduce the
same instances of intentions) will require some kind of coopera-
tion between the library vendors, for example, they will need to
agree on some common interfaces and protocols.

As you can see, IP improves the situation in all three cases.
However, there is still a great need for new research on language
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extensibility. The idea of modularly extendible languages is only
beginning to gain popularity in the research community (e.g., see
[Hud98, DNW+99, KFD99]). In particular, we need to work on
domain models of general-purpose language abstractions and
mechanisms (i.e., studying which combinations of features are pos-
sible, which are useful, which are preferred, and so on). Further-
more, we need more work on language features for encapsulating
aspects in the context of other features (such as the work on
aspect-oriented features in object-orientation as discussed in Chap-
ter 8). We need to study interfaces between features and work
towards standard protocols for metaprogramming. Work on typ-
ing components that implement language features is an active
research area (see e.g., [MPW99]). Such type systems will allow an
extendible programming environment to determine whether a
given configuration of language features is compatible or not.

Q5: With program source expressed as text, I see all the informa-
tion contained in the source at once. By introducing internal repre-
sentations and rendering, I usually don’t. Isn’t it confusing?
In our mind, seeing all the detail of a complex system at once is con-
fusing. In IP, you can, but usually don’t want to view the core render-
ing of the source (see Figure 11-24). Just as in the case of a CAD
system, the separation of internal representation and rendering gives
us the opportunity to build even more complex systems because we
are not forced to work in the most-detailed view all the time.

Q6: Some people still haven’t made the transition to OO. IP
seems to be a completely new paradigm. Isn’t IP too big a para-
digm change to digest for the average programmer?
A very exciting property of IP is that you can introduce it in an
evolutionary way. The only necessary initial investment in terms of
training is teaching your developers to work with the IP editor,
which is not much. At this basic level, your developers can con-
tinue working with the same language(s) and paradigm(s) as they
did previously. You basically import all the legacy code into IP and
use IP as a development environment. Even at this basic level, you
already get several of the following benefits.

♦You get the benefits of tree editing including more efficient typing
and the ease of changing names.

♦You get browsing information that is present and up-to-date all
the time.

♦You get all the refactoring functionality that comes with IP.

In other words, the basic level is to use IP as an efficient forward
and reverse engineering environment. At the next level, as new and
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useful general-purpose and domain-specific language extensions,
refactoring, and other tool extensions for your language appear on
the market, you can use them to improve your code. Finally, as you
collect more and more expertise in a given domain, you may con-
sider developing and marketing your own extension libraries.

It is important to note that IP is not displacing any existing
language paradigms (such as the object-oriented paradigm), but
only helps to better harvest their benefits by promoting multipara-
digm programming and the evolution of language paradigms.

Summary
The main advantages of IP stem from the way IP represents domain
concepts, which is summarized in Figure 11-28. The structure of a
domain concept is given by the structure of its source graph. Its
external representation is defined by the rendering and type-in
methods and its semantics is given by the reduction methods.

This separation has profound consequences. If you represent a
specific concept using a source graph, the structure of the graph
represents the most invariant part of the concept. But, the con-
cept’s external view and semantics may depend on the context: The
concept may be displayed differently at different times (e.g., edit-
ing or debugging time) or it may be displayed differently depend-
ing on its source context (i.e., on the way it is used in a program).
The generated code may depend on the tree context, on the plat-
form, and so on. Given this separation, it is usually enough to
modify or extend the reduction methods to implement new opti-
mizations and adapt the client code to a new context, new plat-
form, and so on without having to modify the client code at all.

If we need to change the source representation itself, it is easier
to do this than to change a textual representation. Tree editing has
many advantages over text editing, such as fewer syntax errors,
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Figure 11-28 Separation of structure, external representation, and
semantics in IP [Sim98]



active interaction with the intentions during editing, and often less
typing (e.g., using additional, short intention names for efficient
typing; using “display-only artifacts” to avoid retyping signatures
of remotely declared procedures and methods; using automatic
type-in templates; and so on). Also, automatic refactoring and
reengineering of code is easier if the source is already in the form of
a resolved AST.

Rendering allows different views, formatting conventions, spe-
cial notations, graphical representations, the translation of names
into different national languages (e.g., English or Chinese), and so
on, and together with the binary source graph representation, it
gives an opportunity for realizing a true document-based program-
ming (as in Knuth’s literate programming [Knu92]). You can
embed animations and hyperlinks in the comments, use pretty
notations for the code, embed bitmaps and controls, and so on. At
the same time, the reduction methods may perform complex com-
putations in order to generate highly-optimized code for these pro-
grams.

At last, after learning so much about the IP technology, let’s go
over the benefits of IP again.

♦It enables the achievement of natural notations, great flexibility,
and excellent performance simultaneously.

♦It provides optimal, domain-specific support in all programming
tasks (supports effective typing, rich notations, debugging, error
reporting, and so on).

♦It addresses the code tangling problem by allowing you to imple-
ment and easily distribute aspect-oriented language features.

♦It allows you to include more design information in the code and
to raise its intentionality.

♦It helps with software evolution by supporting automated editing
and refactoring of code.

♦It makes your domain-specific libraries less vulnerable to changes
on the market of general-purpose programming languages.

♦It can be introduced into an organization in an evolutionary way
with exciting benefits for the minimal cost of initial training.

♦It supports all of your legacy code and allows you to improve it.
♦It provides third-party vendors with a common infrastructure

and a common internal source representation for implementing
and distributing language extensions and language-based tools.

♦It promotes domain specialization and facilitates more effective
sharing of domain-specific knowledge.
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