
THE ARCHITECTURE OF A UML VIRTUAL MACHINE
Dirk Riehle, Steven Fraleigh, Dirk Bucka-Lassen, Nosa Omorogbe
SKYVA International

One Cabot Road
Medford, MA 02155, U.S.A.

++ 1 781 306 7600

Object Oriented, Ltd.
Kramgasse 5

6004 Luzern, Switzerland
++ 41 41 418 7071

dirk@riehle.org, sfraleigh@skyva.com, dirk@bucka-lassen.dk, nomorogbe@skyva.com

ABSTRACT
Current software development tools let developers model a soft-
ware system and generate code from the models to execute the
system. However, generating code and installing a non-trivial
system induces a time delay between changing the model and
executing it that makes rapid model prototyping awkward if not
impossible. This paper presents the architecture of a virtual ma-
chine for UML that interprets UML models without any interme-
diate code-generation step. As its main contribution, the paper
shows how to embed UML in a metalevel architecture so that a
key requirement of model-based systems, the causal connection
property between models and model instances, is always guaran-
teed. With this architecture, changes to a model have immediate
effects on its execution, providing users with rapid feedback about
the model’s structure and behavior. This approach supports model
innovation better than today’s code-generation approaches.

Categories and Subject Descriptors
D.1.5 [Programming Techniques]: Object-oriented Program-
ming—metalevel architectures; D.2.2 [Software Engineering]:
Design Tools and Techniques—Evolutionary prototyping, Rapid
prototyping, Object-oriented design methods; D.2.11 [Software
Engineering]: Software Architectures—Languages, UML; D.3.3
[Programming Languages]: Language Constructs and Fea-
tures—Classes and objects, Frameworks; D.3.4 [Programming
Languages]: Processors—Code generation, Interpreters, Run-
time environments, Virtual machines.

General Terms
Design, Languages.

Keywords
Metamodeling, Causal connection, UML virtual machines.

1 INTRODUCTION
Traditionally, object-oriented modeling languages like UML and
OPEN have served to describe the design of a software system

[27, 18]. The implementation of the system is carried out as a
separate frequently time-consuming step, in which detail is added
to the design-level models. The separation of design from imple-
mentation poses a significant problem, because implementing a
system can take a long time and its design and implementation can
easily get out of sync. Long time-to-market, missing documenta-
tion, and hard-to-change systems are the consequence.

With the industry-wide adoption of UML, a new breed of soft-
ware development tools is gaining prominence. These tools gen-
erate code directly from the models. Users of a tool ideally model
their domains using UML and then publish the models in the form
of generated code into a runtime system. The runtime system con-
nects the code with its environment, for example, databases or
web-servers.

Model-driven code-generation has several advantages over the
traditional approach, including:

• Shorter time-to-market. Users model their domains rather
than implement them. A modeling language like UML is bet-
ter suited to express domain models than a programming
language like Java or Smalltalk.

• Increased reuse and fewer bugs. The tools hide the details of
how the models are hooked up into the runtime system, free-
ing users from knowing intricate details about used frame-
works or system components.

• Easier-to-understand system and up-to-date documentation.
Because design and implementation are always in sync, so is
the documentation. The system is easier to understand and
better documented.

However, code-generation does not solve all the problems. In
particular, it has the following drawback:

• Delay between model change and model instance execution.
Generating code from models, compiling this code, shutting
down the existing system, installing and configuring the new
system, and starting it up can take from minutes to hours.

This time delay makes exploration and simulation of new models
with immediate user feedback awkward if not impossible, thereby
significantly hindering the innovative exploration of the model
solution space. The resulting models easily become sub-optimal.

This paper presents the architecture of a virtual machine for UML.
The virtual machine represents the modeling language (UML), the
models described using UML, and the model instances as first-
class entities. For executing a model, the virtual machine instanti-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that cop-
ies bear this notice and the full citation on the first page. To copy other-
wise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee.

OOPSLA ’01, October 14-18, 2001, Tampa, Florida.
Copyright 2000 ACM 1-58113-000-0/00/0000…$5.00.

2

ates and interprets the model according to UML semantics. With
all models on all levels being explicitly represented, changing a
system’s model leads to immediate (controlled) effects on the
running system. As a result, the system provides short feedback
cycles and allows for simulation and rapid exploration of model
variants, better supporting innovation than possible with code-
generation approaches.

The virtual machine has a logical architecture that is based on the
UML four-level modeling architecture and a physical architecture
that realizes the logical architecture as an object-oriented frame-
work [23]. The logical architecture is a metalevel architecture, and
the physical architecture implements it. As the paper’s main con-
tribution, we discuss how the logical and physical architecture
fulfill the causal connection requirement that seamlessly and re-
cursively integrates a model with its instances. Thus, our discus-
sion focuses on the structural aspects of the architecture, leaving a
discussion of the behavioral aspects to further papers. We discuss
the changes we applied to the UML specification and the en-
hancements that we added to UML to overcome its limitations.

The architecture of the virtual machine has been explored in two
projects at UBS and has been consolidated as a core piece of the
flagship product of SKYVA International. The virtual machine is
part of a system that combines a modeling environment with a
model execution environment, much like CLOS, Smalltalk, or
Self systems provide both a programming environment and a pro-
gram execution environment [19, 7, 28]. We report about our
experiences of using SKYVA’s system in industry projects.

Section 2 reviews the architecture of UML-based systems in gen-
eral. Section 3 presents the architecture of the virtual machine and
how it realizes the requirements set up in Section 2. Section 4
reviews key implementation aspects. Section 5 reviews changes
and additions we have applied to the UML specification. Section
6 then reports about our experiences with the virtual machine.
Section 7 finally lists related work and Section 8 shows how this
work will proceed further and what challenges we see ahead.

2 MODEL-BASED SYSTEMS
The UML specification defines four logical levels of modeling,
called the M0, M1, M2, and M3-level (M stands for model) [27,
16]. These four levels define the logical architecture of any UML-
based system and therefore form the requirements for a virtual
machine that is capable of representing and executing such a sys-
tem.

• The M0-level contains objects that represent the currently
running system. These objects are also called user objects or
domain objects.

• The M1-level contains objects that represent a model of the
currently running system. These objects are also called user
classes or domain classes.

• The M2-level contains objects that represent the modeling
language, in our case UML. This level is also called the
metamodel level.

• The M3-level contains objects that represent the language in
which UML is represented. This level is the also called the
meta-metamodel level.

Every level provides the means to describe the next lower level,
so the M3-level is used to describe the M2-level (UML), the M2-
level is used to describe the M1-level (system models), and the
M1-level describes the M0-level (running systems). In theory, the
number of levels is unbounded, but for most practical purposes,
four levels are sufficient.

2.1 Causal Connection
The four-level architecture is an object architecture that helps us
understand a system’s logical object structure (as opposed to its
physical architecture, see Section 3). Effectively, the logical archi-
tecture serves as a high-level explanation of how objects relate to
each other (which object models which other object; which object
is an instance of which other object).

metaClass class

checkingAccount

savingsAccount

foreignCurrencyAccount

checking12345

savings12345

checking765

foreignCurrency98

savings888

M2-Level (UML) M1-Level (User Classes) M3-Level (MOF) M0-Level (User Objects)

Figure 1: Four-level modeling architecture with Bank Account example. (Dotted lines, right to left, show an instance-of relationship.)

3

Figure 1 displays these four levels and an example. The examples
are bank accounts. Each rectangle represents an object (using
UML as the design notation). The dependency arrows, from right
to left, indicate a logical “instance-of” relationship.

During development, software developers use UML objects (M2-
level objects) to define user classes (M1-level objects). In the
example, developers define three types of bank accounts, Check-
ing-, Savings-, and ForeignCurrencyAccount. At run-time, the
user classes are instantiated, displayed in Figure 1 as the user
objects checking12345, savings12345, etc. These user objects are
M0-level objects.1

For a system of this architecture to be in a valid state, we define
the causal connection property, as known from metalevel archi-
tectures [29]:

1 M0-level user objects are different from M1-level Instance
objects. Instances of the UML Instance concept add to the specifi-
cation of an M1-level class, typically by participating in an illus-
trating scenario of how instances of the class behave. However,
they do not directly represent an instance of the class.

DEFINITION: CAUSAL CONNECTION
A modeling level is causally connected with the next
higher modeling level, if the lower level conforms to
the higher level and if changes in the higher level lead
to according changes in the lower level.

In a model-based system, in which modeling levels are causally
connected, changes to a model cause the structure and behavior of
all model instances to change accordingly.

2.2 Code-generation Approach
Current software development tools use a code-generation ap-
proach to causally connect modeling levels. Typically using
graphical editors, M2-level objects (UML classes) are instantiated
to give users M1-level objects, representing domain classes. For
example, inside such a software development tool, the checking-
Account object logically represents what users of the tool perceive
as their CheckingAccount class. Users of such tools design a do-
main model consisting of M1-level objects, which are instances of
the M2-level UML classes.

checkingAccount

savingsAccount

foreignCurrencyAccount

checking12345

savings12345

checking765

foreignCurrency98

savings888

Class

CheckingAccount

SavingsAccount

ForeignCurrencyAccount

M2-Level (UML) M1-Level (User Classes) M0-Level (User Objects)

Modeling Environment

Runtime Environment

Figure 2: Separation of modeling from runtime environment in code-generation approaches.

4

To create and handle user objects like checking12345, the tool
creates a programming-language-level class for each M1-level
object. The checking12345 object becomes an instance of the
programming-language-level class corresponding to the checking-
Account object. Typically, there is a one-to-one correspondence
between a model-level class and a programming-language-level
class or interface [8]. This code-generation approach fully sepa-
rates the modeling-language M1-level objects from the M0-level
objects. This separation corresponds to the two types of environ-
ments in which the objects are handled: M1-level objects solely
exist in a modeling environment, and M0-level objects solely exist
in a runtime environment.

Figure 2 illustrates this separation. M1-level objects in the model-
ing environment are mapped on the corresponding M1-level
classes of the runtime environment. The causal connection be-
tween model and model instances is maintained by the code-
generator. Only if the modeling environment generates code, do
the model changes carry over into the runtime environment, lead-
ing to the execution of the model instances according to the
changed model.

A single round-trip between the modeling environment and the
runtime environment can take several minutes if not hours. For
non-trivial systems, the delay between model change and model
execution makes rapid exploration of new models impossible,
because the time delay between model change and execution is
too long. Users, who may have to wait for hours until a model
change becomes executable, tend not to explore a wide range of
model options but go the easiest possible path, not exploring pos-
sibly better alternatives.

2.3 Virtual Machine Approach
An interpreter approach avoids the intermediate step of generating
M1-level classes out of M1-level objects. Rather, the runtime
system directly interprets the M1-level objects. All objects exist in
the same memory space, making the causal connection between a

model and its instances immediate. Modeling and runtime envi-
ronment converge, letting users explore new models with rapid
feedback on how these models execute. Simulation results can be
immediately at hand, allowing for a rapid prototyping style on the
modeling level as known from interpreted object systems.

Figure 3 shows how modeling and runtime environment converge.
Users can now interactively explore model behavior and model
variants in real-time. This leads to a working style as known from
Smalltalk and Self where users incrementally define and explore
models. This working style supports the innovative creation of
new models in their respective application domain.

We have designed and implemented a system that directly sup-
ports the logical four-level architecture and embeds it in a com-
bined modeling and runtime environment. The centerpiece of this
system is a virtual machine that directly interprets UML models.

A UML virtual machine, like any virtual machine, is an abstract
computing machine. It provides an instruction set and a memory
model for representing objects [12, 6].

As the instruction set of the virtual machine, we use UML itself.
UML provides several behavior modeling capabilities that can be
used to describe the behavior of a model (including itself).2 Mod-
els are persistently represented using XMI, the OMG standard for
representing UML models using XML [AA, AB].

For the memory model of the virtual machine, we use the memory
management facilities of our implementation language, Java.
Every logical object from any M-level is represented as a Java
object. As Section 6 shows, we add additional capabilities for
model and model instance management and garbage collection.

2 The current UML specification (UML 1.3) is so imprecise
that it is unlikely that two different UML virtual machine imple-
mentations behave the same. We address this question in Section
3.5, 6, and 7.

ElementClassMetaClass

checkingAccount : Classclass : MetaClass checking12345 : ElementmetaClass : MetaClass

«logical-instance-of» «logical-instance-of» «logical-instance-of»

«physical-instance-of» «physical-instance-of» «physical-instance-of»«physical-instance-of»

«logical-instance-of»

M2-Level (UML) M3-Level M1-Level (User Classes) M0-Level (User Objects)

Modeling and Runtime Environment

Figure 3: Convergence of modeling and runtime environment.

5

3 VIRTUAL MACHINE ARCHITECTURE
The architecture of the virtual machine has two parts: a logical
architecture and a physical architecture.

• The logical architecture describes the logical structure of
how objects relate; it is an extension of the architecture of
UML-based systems as discussed in Section 2.

• The physical architecture realizes the logical architecture; it
takes the form of an object-oriented framework that imple-
ments the logical objects.

The logical architecture defines how to achieve the causal connec-
tion property, and the physical architecture implements how to
achieve this property. There can be different physical implementa-
tion architectures, driven by different needs. Our architecture
focuses on the efficient representation of model instances. This
section discusses the architecture and how it fulfills the causal
connection property.

3.1 Logical Architecture
The logical architecture is a pure object architecture: everything is
a first-class object, including classes and their specification of
instance behavior. Thus, there are objects representing the UML
classes, objects representing user classes, and objects representing
user objects. This part of the logical architecture conforms to the
architecture of UML-based systems as discussed in Section 2.
Figure 4 shows the logical architecture in its upper half. In the
logical architecture layer, we can see classes like element, mod-
elElement, classifier, etc. (Logical objects are set in italics.)

Because these classes are objects and not programming-language-
level classes, the only way of connecting them are object links.
Hence, we represent relationships like inheritance and association
using objects. For example, Figure 4 shows some inheritance
relationships, represented as objects named g1, g2, g3, etc. Using
UML terminology, any such object is a generalization object, and
it connects a parent class with its child class.

ModelElement Element

ClassMetaClass

Classifier
-instance0..*

-type

1

metaClass : MetaClass class : MetaClass checkingAccount : Class checking12345 : Element

classifier : MetaClass

modelElement : MetaClass element : Class

g1 : Generalization

g2 : Generalization

g3 : Generalization

instancetype

parent

parent

child

child

g5 : Generalization

g4 : Generalization

child parent

parentchild

type : AssociationEnd

a1 : Association

instance : AssociationEnd

type instance instancetype

parent

child

Physical Classes
(Physical Architecture)

Logical Objects and Classes
(Logical Architecture)

Figure 4: Structure of logical and physical architecture.

6

The root class of all classes in the logical architecture is called
element. It specifies the properties common to all objects in the
logical architecture. A prominent subclass of element is mod-
elElement, the root class of all UML classes. A class in the logical
architecture defines which attributes its instances may have and
with which elements its instances may be associated.

The logical architecture defines the association a1 between the
element class and the class class. This association specifies the
link between a logical object and its describing logical class. An
element object in an instance of this association plays the instance
role and a class in an instance of this association plays the type
role. This association links every element with its class and is the
primary means for fulfilling the causal connection property.

The logical architecture is a single rooted class hierarchy. Thus,
every object is a direct or indirect instance of element. Figure 4
shows several instances of the instance/type association between
element and class: checking12345 is an instance of checkingAc-
count, checkingAccount is an instance of class, and class is an
instance of metaClass, just like the four-level modeling architec-
ture for UML-based systems requires.

Summarizing, the logical architecture mirrors the architecture of
UML-based systems as described in Section 2. It also adds several
classes like element, and several new associations like the in-
stance/type association that specifies how to logically connect an
object with its class.

3.2 Physical Architecture
The physical architecture is a set of programming-language-level
classes that interact in well-defined ways; they form an object-
oriented framework [23]. The physical architecture provides the
physical classes for the logical objects.

Every object in the logical architecture has both a logical class
and a physical class. The logical class defines its model-relevant
properties and the physical class is the programming-language-
level class from which the object is physically instantiated.

In its lower half, Figure 4 shows the physical architecture. It
shows the five programming-language-level classes Element,
ModelElement, Classifier, Class, and MetaClass. Element is the
physical class of all logical M0-level objects, Class is the physical

class of all logical M1-level classes, and MetaClass is the class of
all logical M2-level classes. ModelElement and Classifier are
superclasses that are usually not instantiated.

The logical architecture provides a logical class for every class in
the UML specification. Thereby, the full UML specification is
provided as first-class objects. Many of these logical classes have
a corresponding physical class, but not all. If a physical class ex-
ists, its instances are used as instances of the corresponding logi-
cal class. If no immediately corresponding physical class exists,
the closest physical superclass in the inheritance hierarchy is used.

Figure 5 shows examples of physical and logical instance-of rela-
tionships. The physical instance-of relationship exists between a
physical class and a logical object. The logical instance-of rela-
tionship exists between a logical class and its logical instances.
For example, the checking12345 object has the physical class
Element and the logical class checkingAccount. The checkingAc-
count object has the physical class Class and the logical class
class. The class object has the physical class MetaClass and the
logical class metaClass.

The logical class of an object defines the properties of the object
from a logical modeling perspective: it defines its attributes and
associations; it defines its state model and runtime behavior. At
any given point in time during the execution of the system can an
object ask its class about its properties and may the class change
the properties of its instances.

The implementation of physical classes like Element and Class
makes sure that their instances behave according to their logical
classes. Element is the root class of all model-relevant physical
classes (except for the data type implementations), including Class
and MetaClass. It provides a generic attribute and association
handling mechanism (and more) that is discussed in Section 3.4.

3.3 Model Representation
Representing models using this architecture is straightforward.
Figure 6 shows a domain model of a Customer and some Account
classes. Figure 7 shows this model’s representation using logical
objects as defined in the UML specification.

The model representation in Figure 7 represents every detail of the
UML model in Figure 6 as an object, following the UML specifi-

ElementClassMetaClass

checkingAccount : Classclass : MetaClass checking12345 : ElementmetaClass : MetaClass

«logical-instance-of» «logical-instance-of» «logical-instance-of»

«physical-instance-of» «physical-instance-of» «physical-instance-of»«physical-instance-of»

«logical-instance-of»

Logical Objects and Classes

Physical Classes

Figure 5: Logical and physical instance-of relationships.

7

cation. For example, the inheritance arrow between Account and
CheckingAccount is represented as an instance of the UML Gen-
eralization class.

The class name given for an object in Figure 7 is the name of the
physical class. The logical class is not shown. For example, ac-
count is physically an instance of Class. Logically it is an instance
of class. The generalization g7 is physically an instance of Gener-
alization (a physical class) and logically an instance of generaliza-
tion (a logical class object).

The same mechanism that lets us represent M1-level domain
models also lets us represent M2-level models, including UML
itself. Figure 8 shows a small excerpt from the UML specification,
and Figure 9 shows its object representation.

The physical class of a UML class is MetaClass and the logical
class is metaClass. For example, the logical classes generalization
and association are instances of MetaClass. The relationships are
represented using UML, which is a defined operation, because
metaClass is a subclass of class. Hence, all modeling functionality
applicable to class is also applicable to metaClass.

3.4 Physical Class Model
The structural backbone of the architecture is repeated in Figure
10. It takes the structure of a metalevel architecture [29, 10].

The following two classes are of particular importance:

• Element. This is the physical (super-)class of any logical
object in the system.

• Class. This is the physical (super-)class of all logical objects
representing classes in the system.

We discuss these two classes in turn.

3.4.1 Element
UML defines the modeling capabilities with which an M1-level
user class can be described. Consequently, an M0-level object
must provide capabilities to do whatever its M1-level class speci-
fies. Thus, the UML specification indirectly determines the capa-
bilities of any M0-level object and hence the interface and imple-
mentation of the Element class.

The structural capabilities include:

• It may have attributes.

• It may have links to other elements, where linked-to elements
are conceptually different from attributes.

• It may provide association objects for a given link, if so
specified in the model.

• It may be a node in an object composition hierarchy.

From this feature set, we derive the core functionality of the Ele-
ment class. We add functionality that supports handling of ele-
ments for the virtual machine. Listing 1 shows this functionality,
reduced to the essentials.

The Element class makes some simplifying assumptions, for ex-
ample, it does not support multi-valued attributes and it pragmati-
cally distinguishes associations of multiplicity 0..1 from those of
multiplicity 0..n. Section 5 discusses some of these simplifica-
tions. Section 4 discusses some efficiency considerations for im-
plementing the Element class.

With these capabilities, any physical Element instance can suc-
cessfully play the role of a logical instance of a logical class.
Whatever is modeled for that class, Element provides the func-
tionality to represent it.

Customer Account

SavingsAccount CheckingAccount ForeignCurrencyAccount

-owner

1

-account

0..*

Figure 6: Domain model of Customer and Accounts.

checkingAccount : Class

account : Class

savingsAccount : Class foreignCurrencyAccount : Class

a2 : Associationowner : AssociationEnd account : AssociationEndcustomer : Class

g6 : Generalization g7 : Generalization g8 : Generalization

Figure 7: Logical class representation of Customer and Accounts domain model.

8

3.4.2 Class
The single Element class is fully sufficient to represent all logical
objects and hence the whole logical architecture. Element in-
stances can play the role of the checking12345 object and the role
of the checkingAccount, class, and metaClass classes.

However, this is hard to program with and not very efficient. It is
hard to program with, because tool implementers and infrastruc-
ture classes have to program against a generic interface rather than
a more specific interface that expresses the functionality of the
class of the object. It is not very efficient because a generic im-
plementation cannot take advantage of constraints that a specific
class may be aware of.

For this reason, we implement large parts of the UML as sub-
classes of Element. By making them subclasses of Element, they
inherit its capabilities and hence become full-fledged UML-
specified objects themselves. Many of the methods, specifically
for attribute and association access, are mere convenience wrap-
pers around the generic methods inherited from Element. How-
ever, every such class is free to add functionality that makes using
it easier. One such class is Class. Listing 2 shows its interface.

The Class interface provides methods that are derived from the
UML specification. For every known feature and association,
query and mutation methods exist. As mentioned, these methods
are convenience wrappers of the more generic Element methods.
Listing 3 shows the implementation of two such methods.

Of more interest is implementation functionality specific to class
Class. A prime example is the provision of keys that unambigu-
ously identify attributes and associations. For modeling the attrib-
utes and associations of a class, UML provides dedicated Attrib-
ute and Association classes. While suitable for modeling, they are
too heavy for executing models, and hence we have replaced them
with more lightweight key objects for attribute and association
access. These keys provide essential typing information and make
attribute and association access more efficient. Section 4 discusses
these and other implementation considerations.

3.4.3 Data types
The implementation of primitive data types like integer and string
and non-primitive data types like money and currency is outside
the scope of the Element class hierarchy. Their classes, however,
are represented as UML DataType instances. For their implemen-
tation, we use the standard Java classes Integer, String, etc. and
the data type framework JValue [22].

3.4.4 Match Between Logical and Physical Model
Every physical class is represented as a logical class in the logical
architecture. The physical model mirrors (parts of) the logical
model. The class model of Figure 10 exists both on the physical
and logical level. Therefore, we have both a physical and logical
class Element. The same holds true for MetaClass.

Classifier AssociationEnd+type

1 *

GeneralizableElement Generalization
+child

1

+generalization

*

+parent1 +specialization *

Figure 8: Small and simplified excerpt from the UML specification.

classifier : MetaClass associationEnd : MetaClass

generalizableElement : MetaClass generalization : MetaClass

ae1 : AssociationEndtype : AssociationEnd a5 : Association

g9 : Generalization

child : AssociationEnd a3 : Association generalization : AssociationEnd

parent : AssociationEnd a4 : Association specialization : AssociationEnd

Figure 9: Object representation of the model excerpt from Figure 8.

9

We match the physical with the logical model, because it reduces
the intellectual burden for programmers that implement modeling
tools. Programming with a statically typed interface is easier and
less error-prone than programming with a generic interface.

3.5 Model Execution
The discussion so far has focused on how to represent models
across modeling levels. This subsection discusses how we execute
these models. We can only provide a partial solution, as we make
several restricting assumptions about model execution based on
our runtime architecture. As far as we know, every existing tool
with claims similar to ours makes restricting assumptions about
the runtime architecture and therefore constrains what and how to
model. There are two main reasons for this: first, UML is not
defined precisely enough to allow for unambiguous model execu-
tion, and second, even if UML was defined precisely enough, one
still needs a dedicated runtime architecture on top of which the
models run and with which they are integrated. This runtime ar-
chitecture necessarily imposes constraints on what can be exe-
cuted and what cannot be executed. In this section, we therefore
only demonstrate that model interpretation is possible, and leave
the details to further papers.

UML provides several modeling techniques for specifying the
behavior of classes. Most of these techniques focus on illustrating
behavior rather than completely specifying it. Examples of these
techniques are object collaboration diagrams and message se-
quence diagrams. Illustrating behavior means that any such dia-
gram illustrates one specific case of object interaction and behav-
ior, but it does not specify the overall possible set of interactions.
While helpful to communicate design intent to human readers,
these techniques are not sufficient for fully specifying object be-
havior as needed by a virtual machine to execute model instances.

The one modeling technique that strives for complete behavior
modeling is UML state charts. We use them as the primary tool
for modeling object behavior. Every class has a state chart that
describes the state space of its instances and the possible transi-
tions that may occur. Each instance interprets the state chart
whenever it receives an event in its mailbox. It then reacts accord-
ingly by possibly changing its state and sending out events that
represent the state transitions. The state machine interpretation is
part of the Element class implementation.

We further enrich class descriptions using OCL to ensure con-
straints like business rules between elements. State charts serve
well to describe the behavior of individual objects, but they do not
scale up to describe the behavior of larger parts of a system. We
use OCL to describe inter-object dependencies as constraints be-
tween objects. This way, state transitions in one object are trans-
lated into events relevant to other objects that are not connected
with the originating object through a state chart.

Finally, UML is a modeling language and not a programming
language, so we add algorithmic detail through hand-programmed
policy classes that fit into a well-defined extension architecture
[23] (also known as plug-in architecture [15]). This extension
architecture is part of our runtime architecture. It both supports
and constrains developers in what is possible in terms of model
execution. Developers of a model do not only use UML to de-
scribe system behavior, but also implement policy classes (using
the Strategy design pattern [4]) and hook them up into the model.
This approach is a common pattern: all tools we have seen that
promise to generate executable systems from models make as-
sumptions about specific runtime environments and thereby con-
strain developers and the model space.

Hand-programmed policy classes do not contradict the idea of a
UML virtual machine. First, UML is not fully executable; hence

ModelElement Element

ClassMetaClass

Classifier

-instance0..*

-type

1

M3+ Category M2+ Category M1+ Category

Figure 10: Key classes from the physical architecture.

10

we need something like policies to add algorithmic detail. Second,
UML is not a programming language but rather a modeling lan-
guage. Until an executable Action semantics specification for
UML is available, UML cannot also play the role of a program-
ming language, and hence has to be complemented by one.

The need for more complete behavior specification and executable
semantics of UML models has been recognized. The OMG issued
a Request for Proposals (RFP) for executable Action semantics
and several groups have responded to it [17]. One of the most
important uses of such executable Action semantics will be its
application to UML itself, effectively providing a formal and as
complete as possible UML virtual machine specification.

3.6 Causal Connection
We need to show that the presented architecture fulfills the causal
connection property so that changes in a model lead to immediate
changes in the model instances.

As Figure 4 shows, the element class is logically the superclass of
all other logical classes. Every instance of element (independently
of on which modeling level it resides) has a link to its class. Thus,
every element is connected with the specification of its behavior.

The Element class implementation makes use of this link to de-
termine how an element is to behave and then makes it behave
that way. This ensures that every element behaves according to its
specification.

In UML, a model is defined as a package of interconnected
classes. In the discussed architecture, changes to a class and hence
to a model immediately affect any model instance. Thus, a model
is causally connected with its model instances.

Schema evolution remains a difficult topic. SKYVA’s system lets
users specify how instances of an old class version are to be con-
verted into instances of the new class version. These bridges be-
tween model versions are one of our extensions to UML. They
integrate configuration management with model evolution with
instance upgrading.

4 IMPLEMENTATION
At its primitive level, the implementation of the Element class and
its related classes draws on the access of attributes and associa-
tions. Getting the implementation of these primitives right deter-
mines the overall performance more than any other factor.

All publicly available UML implementations that we have seen
use string-based access to attributes and associations. We use key-
based rather than string-based access to attributes and associa-
tions. This made our virtual machine implementation perform
significantly faster and removed dynamic typing problems that
occur when attributes or associations are named using potentially
misspelled strings.

A key object indicates a specific attribute or association. Effec-
tively, it is a shallow representation of the corresponding Attribute
or AssociationEnd object. For attribute access, we provide dedi-

public interface Element {
// UML: attributes (single-valued)
// The FeatureKey identifies the attribute.
public Object getAttributeValue(FeatureKey fk);
public void setAttributeValue(FeatureKey fk, Object value);
...

// UML: associations with 0..1 multiplicity
// The AssociationKey identifies the association.
public boolean hasLinkedElement(AssociationKey ak);
public Element getLinkedElement(AssociationKey ak);
public void setLinkedElement(AssociationKey ak, Element e);

// UML: associations with 0..n multiplicity
// The AssociationKey identifies the association.
public Iterator allLinkedElements(AssociationKey ak);
public void addLinkedElement(AssociationKey ak, Element e);
public void removeLinkedElement(AssociationKey ak, Element e);
...

// UML: association object access (functionally dependent on association)
// The AssociationKey identifies the association.
public boolean hasAssociationElement(AssociationKey ak);
public AssociationElement getAssociationElement(AssociationKey ak);
...

// VM model: access to type object
// With respect to its class, this element plays the instance role.
public Class getElementClass();
...

// VM implementation: backpointer
// Provides list of objects linked to this element.
public Iterator backpointer();
...

}

Listing 1: Element interface, reduced to the essentials.

11

cated feature key objects, and for association access, we provide
dedicated association key objects, as illustrated in Listings 1, 2,
and 3. For every attribute of a class, one feature key is created and
updated whenever the attribute’s definition changes. The same is
done for associations and association keys. Because a class
changes less frequently than its instances, creating and updating
the keys does not pose a significant runtime overhead.

Every key provides a unique index into an array for efficient ac-
cess to the attribute’s value or linked-to element. The class man-
aging the keys has a complete overview of all its keys and can
therefore compute a perfect distribution of indices for the keys.
Every element manages its attribute values and linked-to elements
in an array. Looking up an attribute’s value or a referenced ele-
ment is as simple and fast as the access to a field in the array.

A key does not only provide an index into an array but also pro-
vides typing information. Effectively, type information is copied
from the model into the key and transformed with the goal of
speeding up type checking.

Whenever an attribute or association is accessed, it must be
checked whether the key is actually a valid key identifying an
attribute and association that really exists for the given object.
This type checking is necessary to protect against bugs in the
virtual machine implementation and in the policy implementations
by which users add programmatic behavior to models.

A sequence of checks ensures integrity of access: the owner of the
key and the class of the element must be identical, and the typing

information found in the key must match the meta-information
stored directly in the element, for example, whether a linked-to
element is truly a composed element or merely a regularly associ-
ated element.

Finally, key objects are shared immutable objects. A managing
object controls their instantiation (see the Flyweight design pat-
tern [4]). This way, no client code can create key objects. This lets
the system maintain control over typing information. No typing
information ever enters the system from the outside without being
checked at the system boundaries. Client code like policies re-
quest key objects, they do not create them. While this cannot pre-
vent that a message is being sent to the wrong object, it at least
ensures that the message is always a valid message.

We discuss further implementation considerations and optimiza-
tions in a related paper [24].

5 UML EXTENSIONS
In Section 3 on the virtual machine architecture, we describe how
we make UML part of a larger logical architecture. In this section,
we discuss some of our extensions to UML and some of the sim-
plifications we applied.

5.1 Technical Domain Models
For executing application domain models, users need a means to
express how to present the model instances in user interfaces for
user interaction, how to represent them for persistence in data-

public interface Class extends Classifier {
// UML: a class has features that can be accessed by name
public boolean hasFeature(String featureName);
public Feature getFeature(String featureName);
public Iterator allFeatures();
public void addFeature(String featureName, Feature f);
public void removeFeature(String featureName);
...

// UML: a class has association ends that link it to associations
public boolean hasAssociationEnd(String roleName);
public AssociationEnd getAssociationEnd(String roleName);
public Iterator allAssociationEnds();
public void addAssociationEnd(AssociationEnd ae);
public void removeAssociationEnd(AssociationEnd ae);
...

// VM implementation: provide access to keys
public Iterator allFeatureKeys();
public FeatureKey getFeatureKey(String attributeName);
public Iterator allAssociationKeys();
public AssociationKey getAssociationKey(String roleName);
...

}

Listing 2: Class interface (showing inherited Classifier methods for convenience).

public Feature allFeatures() {
return allLinkedElements(FEATURE_KEY);

}

public void addFeature(Feature f) {
addLinkedElement(FEATURE_KEY, f);

}

Listing 3: How Class uses the generic methods of Element.

12

bases, and how to distribute them across different processes and
computer systems.

This information is cast as technical domain models that exist next
to the application domain models (technical meaning a technical
(infrastructure) application domain as opposed to a business ap-
plication domain).3 Users can extend and configure the technical
domain models as much as they can define and then extend and
configure the application domain models. Default models may
apply, but users can always customize them.

The first user of these technical domain models is the modeling
environment. It uses models to describe user interface layouts,
database schema mappings, and system distribution. These models
are specific to a given runtime environment and can differ widely
from implementation to implementation.

One common need, however, that is likely to be found in any
system implementation, is the need to organize model instances in
packages and applications. We therefore extend the UML package
and project concepts to apply to every element, not just UML
model elements. Figure 11 shows the resulting model.

Figure 11 shows two Package classes. On left, it shows the tradi-
tional UML Package class, which is a subclass of Namespace and
which is reserved to contain only model elements. On the right,
Figure 11 shows a general Package class that can contain any kind
of element, be it a UML model element or a regular non-UML
element.

The semantics of the general Package class are weaker than those
of the UML Package class: it accepts different elements with the

3 These technical domain models are equivalent to the class
libraries and frameworks that come with Smalltalk and Java.

same name and it does not support package inheritance. This shift
in semantics is the reason why we decided to introduce the gen-
eral Package class rather than to extend the existing UML Pack-
age class to contain any type of element.

A special subclass of the general Package class is Application. Its
instances are the root objects for a given running application.

5.2 UML Simplifications
In our UML implementation, we have applied a number of simpli-
fications. Structural simplifications include:

• No multi-valued attributes of elements.

• Attributes of elements are always UML data types.

• Only binary associations between classes.

So far, we have not encountered any problems due to these re-
strictions.

6 EXPERIENCES
We have built three systems with this type of architecture, two at
UBS, and one at SKYVA International.

The two systems built at Ubilab, the late IT research laboratory of
UBS, were a research prototype that provided a full-fledged
metalevel architecture as described in this paper, and a produc-
tion-level system that let users model, represent and edit corporate
loans. The research prototype was used to explore and demon-
strate the idea of model-driven software systems based on a dy-
namic object model, as we called it at that time. The production-
level system is used in UBS’ corporate customer business. Its
primary functionality is in capturing and presenting corporate
loans. Effectively, it is an object-oriented product data manage-

Element

Package

Application

-package

1

-ownedElement

0..*ModelElement

Namespace

Package

-ownedElement

0..*

-namespace

1

M2+ Category M1+ Category

Figure 11: Managing elements in packages and applications.

13

ment system. Both systems did not use UML on the M2-level but
rather a simpler proprietary metamodel. Both systems worked well
for their purpose. However, both systems focussed primarily on
representing and editing structure, which is much simpler than
representing and executing behavior.

The UML virtual machine built at SKYVA International is part of
SKYVA’s main product for supply chain management and col-
laborative e-commerce. It has been used in a number of industry
projects and is the most extensive base of our implementation
experience. The system exhibits most characteristics discussed in
this paper. It has a full-fledged UML-based metalevel architec-
ture. It lets users model their application domain and execute
these models. Feedback on model changes is immediate and sup-
ports users in exploring domain models.

Still, it is a hybrid system: for innovative model exploration and
system configuration, we use an interpreted approach, and for
production-level system execution, we use a code-generation ap-
proach. Hence, we have two runtime environments: one UML
virtual machine that is embedded in the modeling environment
and that allows for lightweight model execution, and one that is a
separate system capable of carrying high volume transactions and
mass data persistence.

Our biggest remaining problem is modeling of behavior and exe-
cution of the modeled behavior. At the time of writing, we still
have to implement a significant amount of code (policies) to add
behavior to the models. UML’s behavior modeling features are
not sufficient to completely describe desired behavior and our
behavior modeling extensions and implementations have not fully
overcome this problem. However, other companies, for example
Project Technology [20] and Kennedy Carter [AC] have shown
that precise behavior modeling is possible with (an extended form
of) UML. Their systems allow the execution of models based
purely on modeled rather than implemented behavior. Key to their
approach as well as our approach is knowledge about the target
runtime architecture.

SKYVA’s system comprises significantly more components than
the virtual machine discussed in this paper. The modeling envi-
ronment provides an elaborate repository-based infrastructure that
supports model persistence, configuration management, collabora-
tion in a team and more. The system provides not only technical
domain models but generic application domain models as well,
targeted at supply-chain management and e-commerce.

We have found that generic domain models are best supported by
UML extensions that reflect the domain concepts. Similarly, we
have found that UML extensions without a complementing ge-
neric domain model are of limited use, because we cannot inte-
grate separately developed domain models. This is in contrast to
industry’s current attempts to provide standards by extending
UML only without providing (generic M1-level) domain models.
Also, we view the lack of a standardized Element class as a major
hindrance for integrating independently developed domain models
in UML-based modeling.

7 RELATED WORK
We discuss related work on virtual machines, metalevel architec-
tures, model-driven software systems and UML-based software
development tools.

Virtual machines for programming languages like Smalltalk [6],
Self [28, 9], and Java [1, 12] have both inspired this work as a
metaphor and provided solid implementation advice. Like Small-
talk and Self, and unlike Java, we fully represent the modeling
language using the system’s own capabilities.

The architecture of the virtual machine, however, probably owes
most to CLOS [2, 19, 5]. CLOS’ simple yet elegant metalevel
architecture directly influenced how we extended UML with M1
and M3-level classes to turn the logical model into a reflective
system.

While the described architecture shares structural and behavioral
properties with the CLOS metalevel architecture and related re-
flective architectures [13, 29, 10, 21], we address a problem that
has not been addressed by any such programming-language cen-
tric architecture: the modeling of application domains using a
dedicated modeling language and the execution of the resulting
models. To the best of our knowledge, we are the first to combine
a modeling language with a metalevel architecture with a virtual
machine approach.

Others have recognized the need for model-driven software sys-
tems that provide an explicit model of themselves. Most notably,
Tilman provides an account of an object-oriented framework that
is used to capture models and model instances and to persist them
between instantiations [26]. Tilman’s application domain is form-
based workflow-oriented business applications. A similar system
is discussed by Kovacs [11]. Kovacs and his colleagues built a
system for product configuration and workflow management of
large high-energy physics detectors. Similarly, Manolescu dis-
cusses a system that explicitly represents workflow descriptions
next to the actual workflows [14]. Common to these systems is
that they all have a descriptive layer next to an instance layer.
However, in all three cases, the modeling language is specific to
that system.

Currently, a lot of industry research and development is invested
into UML-based modeling tools. As discussed in the introduction,
the common pattern is to model a system using UML and then to
generate code and publish the code into a runtime system [8]. A
few systems have enhanced UML with precise behavior modeling
so that no programming by hand is necessary. An example is Pro-
ject Technology’s BridgePoint system [20], originally based on
the Shlaer Mellor methodology [25]. BridgePoint lets users model
embedded systems using an enhanced form of UML that supports
precise behavior modeling. From the models, code is generated.
Another example is Kennedy Carter’s iUML tool suite that sup-
ports modeling of embedded systems using UML with precise
action semantics [AC]. iUML also let’s users simulate the mod-
eled system, providing feedback about the system. Project Tech-
nology and Kennedy Carter have worked together on one of the
submissions to the OMG RFP for precise action semantics for
UML.

8 CONCLUSIONS
This paper presents the architecture of a virtual machine for UML.
The virtual machine consists of a logical extension of the UML
four-level modeling architecture plus an object-oriented frame-
work that implements this architecture. The virtual machine ex-
plicitly represents UML, UML models, and UML model instances
(actual instances of running systems). This approach lets users

14

immediately see the effects of model changes. This feedback sup-
ports rapid model prototyping and innovative exploration of mod-
els better than possible with today’s code-generation approaches.

While we use rapid user feedback as the motivation to choose an
interpreted approach over a code-generation approach, other ad-
vantages of the UML virtual machine approach weigh in as well.
For example, it is significantly easier to develop a 24x7 always-on
system, because the availability of explicit models makes system
evolution easier. We have documented this and other business
drivers behind our approach in [AD].

We see several areas for further research: the execution speed of
the virtual machine, better precise behavior modeling, the defini-
tion and integration of modeling language extensions to integrate
otherwise unrelated domain models in a coherent system, and
model evolution support. Our experience indicates that all of these
areas are important and must be addressed, contributing signifi-
cantly to the usefulness of the virtual machine approach.

We have found many shortcomings in the UML specification that
limit its usefulness. However, these shortcomings are being rec-
ognized. Future specifications of UML and related technologies
will provide a basis on top of which UML virtual machines can be
standardized. Then models will become exchangeable between
virtual machines and lead to the same system behavior.

ACKNOWLEDGEMENTS
We would like to thank Thomas Gross, Christian Nester, Philipp
Oser, Johan Ovlinger, Alan Perry, Wolf Siberski, Hans Wegener,
and the anonymous reviewers for valuable feedback that helped us
improve the paper.

REFERENCES
[1] Ken Arnold and James Gosling. The Java Programming
Language. Addison-Wesley, 1996.

[2] Daniel G. Bobrow, Linda G. DeMichiel, Richard P.
Gabriel, Sonya E. Keene, Gregor Kiczales, and David A. Moon.
“Common Lisp Object System Specification.” SIGPLAN Notices,
23 (Special Issue), September 1988.

[3]

[4] Erich Gamma, Richard Helm, Ralph Johnson, and John
Vlissides. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1995.

[5] Gregor Kiczales, Jim D. Rivieres, and Daniel G. Bobrow.
The Art of the Metaobject Protocol. MIT Press, 1991.

[6] Adele Goldberg and David Robson. Smalltalk: The Lan-
guage and Its Implementation. Addison-Wesley, 1983.

[7] Adele Goldberg and David Robson. Smalltalk: The Lan-
guage. Addison-Wesley, 1989.

[8] William Harrison, Charles M. Barton, and Mukund
Raghavachari, “Mapping UML to Java.” In Proceedings of Ob-
ject-Oriented Programming Languages, Systems, and Applica-
tions (OOPSLA 2000). ACM Press, 2000.

[9] Urs Hölzle. Adaptive optimization for Self: Reconciling
High Performance with Exploratory Programming. Ph.D. Thesis
STAN-CS-TR-94-1520. Stanford University, 1994.

[10] Akinori Yonezawa and Brian C. Smith (editors). Proceed-
ings of the International Workshop on New Models for Software
Architecture ’92: Reflection and Metalevel Architecture (IMSA
’92). Japan: November 4-7, 1992.

[11] Zsolt Kovacs. The Integration of Product Data with Work
Flow Management Systems through a Common Data Model.
Ph.D. Thesis. University of the West of England, 1999.

[12] Tim Lindholm and Frank Yellin. The Java Virtual Ma-
chine Specification, Second Edition. Addison-Wesley, 1998.

[13] Patti Maes and Daniele Nardi. Meta-Level Architectures
and Reflection. Elsevier Science Publishers, 1988.

[14] Dragos-Anton Manolescu. Micro-Workflow: a Workflow
Architecture Supporting Compositional Object-Oriented Software
Development. Ph.D. Thesis. University of Illinois at Urbana-
Champaign, 2001.

[15] Klaus Marquardt. “Patterns for Software Packaging, In-
stallation and Activation.” In Proceedings of the 3rd European
Conference on Pattern Languages of Programming and Comput-
ing (EuroPLoP 1998). Universitätsverlag Konstanz, 1998.

[16] OMG. Metaobject Facility Specification 1.3. OMG
Document 99-06-05. OMG, 1999. Available from www.omg.org.

[17] OMG. Action Semantics for the UML RFP. OMG Docu-
ment 98-11-01. OMG, 1998. Available from www.omg.org.

[18] Donald G. Firesmith, Brian Henderson-Sellers, Ian Gra-
ham, and Meilir Page-Jones. Open Modeling Language Reference
Manual. SIGS Publications, 1998.

[19] Andreas Paepcke (editor). Object-Oriented Programming:
the CLOS Perspective. MIT Press, 1993.

[20] Project Technology. BridgePoint Tutorial. Project Tech-
nology, 2000. Available from www.projtech.com.

[21] Gregor Kiczales (editor). Proceedings of Reflection 1996.
Xerox Parc, 1996.

[22] Dirk Riehle. The JValue Value Object Framework, Ver-
sion 0.5.1. Available from www.jvalue.org.

[23] Dirk Riehle. Framework Design: a Role Modeling Ap-
proach. Ph.D. Thesis, No. 13509. ETH Zürich, 2000. Available
from www.riehle.org/diss.

[24] Dirk Riehle, Michel Tilman, and Ralph Johnson. “Dy-
namic Object Model.” In Proceedings of the 2000 Conference on
Pattern Languages of Programs (PLoP 2000). Washington Uni-
versity Technical Report Number WUCS-00-29.

[25] Sally Shlaer and Neil Lang. Shlaer-Mellor Method: The
OOA96 Report. Project Technology, 1996. Available from
www.projtech.com.

[26] Michel Tilman and Martine Devos. “A Reflective and
Repository-Based Framework.” In Implementing Application
Frameworks. Wiley, 1999. Page 29-64.

[27] OMG. Unified Modeling Language Specification 1.3.
OMG, 1999. Available from www.omg.org.

[28] David Ungar and Randall B. Smith. “Self: The Power of
Simplicity.” In Proceedings of Object-Oriented Programming

15

Languages, Systems, and Applications (OOPSLA 1987). ACM
Press, 1987.

[29] Chris Zimmermann (editor). Advances in Object-Oriented
Metalevel Architectures and Reflection. CRC Press, 1996.

[AA] OMG. XML Metadata Interchange. OMG Document 98-
10-05. OMG, 1998. Available from www.omg.org

[AB] OMG. XML Metadata Interchange Specification V1.1.
OMG, 1998. Available from www.omg.org.

[AC] Kennedy Carter. I-OOA Modelling Tool Technical Over-
view. Kennedy Carter, 2000. Available from www.kc.com.

[AD] Dirk Riehle and Erica Dubach. “Why a Bank Needs Dy-
namic Object Models.” Position Paper for OOPSLA '98, Work-
shop 15. Available from www.riehle.org.

9 NOTES
Brian Foote. “Object, Reflection, and Open Languages.” Relationship between reflection, extensibility (and frameworks?)

Discuss need for specialized target architecture.

Abstract syntax trees as representation form.

Change class names to recursive but first Capital letter?

The next sections discuss the structural aspects of the architecture of the virtual machine and its implementation.

Words: 8205

