
09.02.1999 Active-Object.pub.doc

Active Object 1

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Active Object

The Active Object design pattern decouples method execution from
method invocation to enhance concurrency and simplify synchro-
nized access to objects that reside in their own threads of control.

Also Known As Concurrent Object, Actor

Example Consider the design of a communication gateway.1 A gateway decou-
ples cooperating components and allows them to interact without
having direct dependencies among each other. For example, a gate-
way may route messages from one or more supplier processes to one
or more consumer processes in a distributed system.

The suppliers, consumers, and gateway communicate using TCP,
which is a connection-oriented protocol [Ste93]. Therefore, the
gateway software may encounter flow control from the TCP transport
layer when it tries to send data to a remote consumer. TCP uses flow
control to ensure that fast suppliers or gateways do not produce data
more rapidly than slow consumers or congested networks can buffer
and process the data.

To improve end-to-end quality of service (QoS) for all suppliers and
consumers, the entire gateway process must not block while waiting
for flow control to abate over any one connection to a consumer. In
addition, the gateway must be able to scale up efficiently as the
number of suppliers and consumers increase.

An effective way to prevent blocking and improve performance is to
introduce concurrency into the gateway design. In a concurrent appli-

1. See the Acceptor-Connector pattern (117) for further details on this example.

Local Area Network 2

Gateway

Local Area Network 1

Supplier A Consumer B

Message
Delivery

More
Suppliers

and
Consumers

More
Suppliers
and
Consumers

2

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

09.02.1999 Active-Object.pub.doc

cation, the thread of control of an object O that executes a method can
be decoupled from the threads of control that invoke methods on O.
Using concurrency in the gateway enables threads whose TCP con-
nections are flow controlled to block without impeding the progress of
threads whose TCP connections are not flow controlled.

Context Clients that access objects running in separate threads of control.

Problem Many applications benefit from using concurrent objects to improve
their QoS, for instance, by allowing an application to handle multiple
client requests in parallel. Instead of using single-threaded passive
objects, which execute their methods in the thread of control of the
client that invoked the methods, concurrent objects reside in their
own thread of control. However, if objects run concurrently we must
synchronize access to their methods and data if these objects are
shared by multiple client threads. In the presence of this problem,
three forces arise:

• Methods invoked on an object concurrently should not block the
entire process to prevent degrading the QoS of other methods.

➥ For instance, if one outgoing TCP connection in our gateway
example is blocked due to flow control the gateway process should
still be able to queue up new messages while waiting for flow
control to abate. Likewise, if other outgoing TCP connections are
not flow controlled, they should be able to send messages to their
consumers independently of any blocked connections. ❏

• Synchronized access to shared objects should be simple. Applica-
tions like the gateway example are often hard to program if devel-
opers must explicitly use low-level synchronization mechanisms,
such as acquiring and releasing mutual exclusion (mutex) locks. In
general, methods that are subject to synchronization constraints
should be serialized transparently when an object is accessed by
multiple client threads.

• Applications should be designed to transparently leverage the par-
allelism available on a hardware/software platform.

➥ In our gateway example, messages destined for different
consumers should be sent in parallel by a gateway over different
TCP connections. If the entire gateway is programmed to only run
in a single thread of control, however, performance bottlenecks

09.02.1999 Active-Object.pub.doc

Active Object 3

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

cannot be alleviated transparently by running the gateway on a
multi-processor. ❏

Solution For each object exposed to the above forces, decouple method invoca-
tion on the object from method execution. This decoupling is designed
so the client thread appears to invoke an ordinary method. This
method invocation is converted automatically into a method request
object and passed to another thread of control, where it is later con-
verted back into a method invocation that is executed on the object
implementation.

An Active Object consists of the following components. A proxy
[POSA1] [GHJV95] represents the interface of the object and a servant
[OMG98b] provides the object’s implementation. Both the proxy and
the servant run in separate threads so that method invocations and
method executions can run concurrently, that is, the proxy runs in
the client thread, while the servant runs in a different thread. At run-
time, the proxy transforms the client's method invocations into meth-
od requests, which are stored in an activation queue by a scheduler.
The scheduler’s event loop runs continuously in the same thread as
the servant, dequeueing method requests from the activation queue
and dispatching them on the servant. Clients can obtain the result of
a method's execution via a future returned by the proxy.

Structure There are six key participants in the Active Object pattern:

A proxy [POSA1] [GHJV95] provides an interface that allows clients to
invoke publically accessible methods on an Active Object using stan-
dard strongly-typed programming language features, rather than
passing loosely-typed messages between threads. When a client in-
vokes a method defined by the proxy, this triggers the construction
and queueing of a method request object onto the scheduler’s activa-
tion queue, all of which occurs in the client’s thread of control.

A method request is used to pass context information about a specific
method invocation on a proxy, such as method parameters and code,
from the proxy to a scheduler running in a separate thread. An ab-
stract method request class defines an interface for executing the
methods of an Active Object. This interface also contains guard
methods that can be used to determine when a method request's syn-
chronization constraints are met. For every Active Object method
offered by a proxy that requires synchronized access in its servant,

4

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

09.02.1999 Active-Object.pub.doc

the abstract method request class is subclassed to create a concrete
method request class. Instances of these classes are created by the
proxy when its methods are invoked and contain the specific context
information necessary to execute these method invocations and re-
turn any result back to clients.

An activation queue maintains a bounded buffer of pending method
requests created by the proxy. This queue keeps track of which meth-
od requests to execute. It also decouples the client thread from the
servant thread so the two threads can run concurrently.

A scheduler runs in a different thread than its clients, managing an
activation queue of method requests that are pending execution. A
scheduler decides which method request to dequeue next and execute
on the servant that implements this method. This scheduling decision
is based on various criteria, such as ordering, for example the order
in which methods are inserted into the activation queue, or synchro-
nization constraints, for instance the fulfillment of certain properties
or the occurrence of specific events, such as space becoming available

Class
Concrete Method
Request

Responsibility
• Implements the

representation of a
specific method call

Collaborator
• Servant
• Future

Class
Proxy

Responsibility
• Defines the Active

Object’s interface to
clients

• Creates Method
Request

• Runs in the client’s
thread

Collaborator
• Method Request
• Scheduler
• Future

Class
Abstract Method
Request

Responsibility
• Represents a

method call on the
Active Object

• Provides guards to
check when the
method request
becomes runnable

Collaborator
• Servant
• Future

09.02.1999 Active-Object.pub.doc

Active Object 5

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

for new elements in a data structure with a bounded size. A scheduler
typically evaluates synchronization constraints by using the method
requests’ guards.

A servant defines the behavior and state that is being modeled as an
Active Object. A servant implements the methods defined in the proxy
and the corresponding method requests. A servant method is invoked
when its corresponding method request is executed by a scheduler;
thus, a servant executes in the scheduler’s thread of control. A ser-
vant may provide other predicate methods that can be used by meth-
od requests to implement its guards.

When a client invokes a method on a proxy, a future is returned im-
mediately to the client. A future [Hal85] [LS88] allows a client to ob-
tain the result of method invocations after the servant finishes exe-
cuting the method. The future reserves space for the invoked method
to store its result. When a client wants to obtain this result, it can ren-
dezvous with the future, either blocking or polling until the result is
computed and stored into the future.

Class
Activation Queue

Responsibility
• Maintains method

requests pending
for execution

• Runs in the Active
Object’s thread

Collaborator Class
Scheduler

Responsibility
• Executes method

requests
• Runs in the Active

Object’s thread

Collaborator
• Activation

Queue
• Method Request

Class
Servant

Responsibility
• Implements the

Active Object
• Runs in the Active

Object thread

Collaborator Class
Future

Responsibility
• Contains the result

of a method call on
an Active Object

Collaborator

6

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

09.02.1999 Active-Object.pub.doc

The UML class diagram for the Active Object pattern looks as follows:

Dynamics The behavior of the Active Object pattern can be divided into three
phases:

Method request construction and scheduling. A client invokes a meth-
od on the proxy. This triggers the creation of a method request, which
maintains the argument bindings to the method, as well as any other
bindings required to execute the method and return its result. The
proxy then passes the method request to the scheduler, which en-
queues it on the activation queue. If the method is defined as a two-
way [OMG98b], a binding to a future is returned to the client. No fu-
ture is returned if a method is defined as a one-way, which means it
has no return values.

Method request execution. The scheduler runs continuously in a dif-
ferent thread than its clients. In this thread, the scheduler monitors
its activation queue and determines which method request(s) have
become runnable, for example, when their synchronization con-
straints are met. When a method request becomes runnable, the
scheduler dequeues it, binds the request to the servant, and dis-
patches the appropriate method on the servant. When this method is
called, it can access and update the state of its servant and create its
result, if it’s a two-way method.

Proxy

method_1()
method_N()

Concrete
MethodRequest_1

guard()
call()

Concrete
MethodRequest_N

guard()
call()

MethodRequest

guard()
call()

Scheduler

dispatch()
enqueue()

1 1 1 1

*
<<execute>>

<<maintain>

Servant

method_1()
method_N()

Future

<<instantiate>>

<<write to>>

Activation
Queue

enqueue()
dequeue()

<<instantiate>>

09.02.1999 Active-Object.pub.doc

Active Object 7

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Completion. In the final phase, the result, if any, is stored in the fu-
ture and the scheduler continues to monitor the activation queue for
runnable method requests. After a two-way method completes,
clients can retrieve its result via the future. In general, any clients
that rendezvous with the future can obtain its result. The method re-
quest and future are explicitly deleted or garbage collected when they
are no longer referenced.

Implementation The following steps illustrate how to implement the Active Object
pattern.

1 Implement the servant. A servant defines the behavior and state that
are being modeled as an Active Object. The methods it implements are
accessed indirectly by clients via a proxy. In addition, the servant may
contain other methods used by method requests to implement guards
that allow the scheduler to evaluate run-time synchronization con-
straints. These constraints determine the order in which a scheduler
dispatches method requests.

➥ Our gateway example uses a number of servants of type
MQ_Servant to buffer messages that are pending delivery to consum-

Future

Method
Request

Result

Method
Request

Method
Request

: Client : Proxy : Scheduler : Activatio
Queue

: Method
Request

: Servant

method()

enqueue()

dequeue()

guard()

call()
method()

dispatch()

: Future

<<write to

Result

Result

future>>

<<read from
future>>

Future

<<create>>

<<create>>

enqueue()

8

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

09.02.1999 Active-Object.pub.doc

ers. For each remote consumer, there is a consumer handler that con-
tains a TCP connection to a consumer process. In addition, a con-
sumer handler contains a message queue modeled as an Active Ob-
ject and implemented with an MQ_Servant . Each consumer handler’s
Active Object message queue stores messages passed from suppliers
to the gateway while they are waiting to be sent to the remote con-
sumer.

The following class illustrates the interface for MQ_Servant :

class MQ_Servant {
public:

// Constructor
MQ_Servant (size_t mq_size);

// Message queue implementation operations.
void put_i (const Message &msg);
Message get_i (void);

// Predicates.
bool empty_i (void) const;
bool full_i (void) const;

private:
// Internal queue representation, e.g.,
// a circular array or a linked list, etc.

};

The put_i() and get_i() methods implement the message insertion
and removal operations on the queue, respectively. In addition, the
servant defines two predicates, empty_i() and full_i() , that dis-
tinguish three internal states: empty, full, and neither empty nor full.
These predicates are used in the implementation of the method re-
quest guard methods, which allow a scheduler to enforce run-time
synchronization constraints that dictate the order in which put_i()
and get_i() methods are called on a servant. ❏

Note how the MQ_Servant class is designed so that synchronization
mechanisms remain external to the servant. For instance, in the gate-
way example the methods in the MQ_Servant class do not include any
code that implements synchronization. This class only provides
methods that implement the servant's functionality and check its in-
ternal state. This design avoids the inheritance anomaly problem
[MWY91], which inhibits the reuse of servant implementations if sub-
classes require different synchronization policies. Thus, a change to

09.02.1999 Active-Object.pub.doc

Active Object 9

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

the synchronization constraints of the Active Object need not affect
its servant implementation.

2 Implement the proxy and method requests. The proxy provides clients
with an interface to the servant's methods. For each method
invocation by a client, the proxy creates a method request. A method
request is an abstraction for the context2 of the method. This context
typically includes the method parameters, a binding to the servant
the method will be applied to, a future for the result, and the code for
executing the method request.

➥ In our gateway example, the MQ_Proxy provides an abstract
interface to the MQ_Servant defined in step 1. In addition, it is a
factory that constructs instances of method requests and passes
them to a scheduler, which queues them for subsequent execution in
a separate thread.

class MQ_Proxy {
public:

// Bound the message queue size.
const int MQ_MAX_SIZE = 100;

MQ_Proxy (size_t size = MQ_MAX_SIZE)
: scheduler_ (new MQ_Scheduler (size)),

servant_ (new MQ_Servant (size)) {}

// Schedule <put> to execute on the Active Object.
void put (const Message &msg) {

Method_Request *method_request =
new Put (servant_, msg);

scheduler_->enqueue (method_request);
}

// Return a Message_Future as the "future"
// result of an asynchronous <get>
// method on the Active Object.
Message_Future get (void) {

Message_Future result;
Method_Request *method =

new Get (servant_, result);
scheduler_->enqueue (method_request);
return result;

}

// ... empty() and full() predicate
// implementations ...

2. The context is often called a closure of a method.

10

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

09.02.1999 Active-Object.pub.doc

protected:
// The servant that implements the
// Active Object methods.
MQ_Servant *servant_;

// A scheduler for the message queue.
MQ_Scheduler *scheduler_;

};

Each method of an MQ_Proxy transforms its invocation into a method
request and passes the request to the scheduler, which enqueues it
for subsequent activation. A Method_Request base class defines
virtual guard() and call() methods that are used by the scheduler
to determine if a method request can be executed and to execute the
method request on its servant, respectively, as follows:

class Method_Request {
public:

// Evaluate the synchronization constraint.
virtual bool guard (void) const = 0;

// Execute the method.
virtual void call (void) = 0;

}; ❏

The methods in this class must be defined by subclasses, one sub-
class for each method defined in the proxy. The rationale for defining
these two methods is to provide schedulers with a uniform interface
which allows to decouple them from specific knowledge of how to eval-
uate the synchronization constraints or trigger the execution of
concrete method requests.

Note that multiple client threads in a process can share the same
proxy. For instance, several supplier handlers can access the proxy
that belongs to a specific consumer handler. The proxy methods need
not be thread-safe since the scheduler and activation queue handle
serialization.

➥ When a client invokes the put() method on the proxy in our
gateway example, this method call is transformed into an instance of
the Put subclass, which inherits from Method_Request and contains
a pointer to the MQ_Servant , as follows.

class Put : public Method_Request {
public:

Put (MQ_Servant *rep, Message arg)
: servant_ (rep), arg_ (arg) {}

09.02.1999 Active-Object.pub.doc

Active Object 11

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

virtual bool guard (void) const {
// Synchronization constraint: only allow
// <put_i> calls when the queue is not full.
return !servant_->full_i ();

}

virtual void call (void) {
// Insert message into servant.
servant_->put_i (arg_);

}
private:

MQ_Servant *servant_;
Message arg_;

};

Note how the guard() method uses the MQ_Servant ’s full_i()
predicate to implement a synchronization constraint that allows the
scheduler to determine when the Put method request can execute.
Then, its scheduler invokes the method request’s call() hook meth-
od. This call() hook uses its run-time binding to the MQ_Servant to
invoke the servant’s put_i() method. This method is executed in the
context of that servant and does not require any explicit serialization
mechanisms since the scheduler enforces all the necessary synchro-
nization constraints via method request guard() methods. Likewise,
the proxy transforms the get() method into an instance of the Get
class:

class Get : public Method_Request {
public:

Get (MQ_Servant *rep, const Message_Future &f)
: servant_ (rep), result_ (f) {}

bool guard (void) const {
// Synchronization constraint: cannot call
// a <get_i> method until the queue is not empty.
return !servant_->empty ();

}

virtual void call (void) {
// Bind the dequeued message to the
// future result object.
result_ = servant_->get_i ();

}

private:
MQ_Servant *servant_;
Message_Future result_;

};

12

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

09.02.1999 Active-Object.pub.doc

For every two-way method in the proxy that returns a value, such as
the get() method in our gateway example, a Message_Future is
returned to the client thread that calls it (see implementation step 4).
This Message_Future is implemented using the Counted Pointer
idiom [POSA1], which uses a reference counted pointer to a
dynamically allocated Message_Future_Rep body that is accessed
via the Message_Future handle. ❏

A client may choose to evaluate the Message_Future 's value immedi-
ately, in which case the client blocks until the method request is
executed by the scheduler. Conversely, the evaluation of a return re-
sult from a method invocation on an Active Object can be deferred, in
which case the client thread and the thread executing the method can
both proceed asynchronously.

3 Implement the activation queue. Each method request is enqueued on
an activation queue. This queue is typically implemented as a thread-
safe bounded-buffer that is shared between the client threads and the
thread where the scheduler and servant run. An activation queue
provides an iterator that allows the scheduler to traverse its elements
in accordance with the Iterator pattern [GHJV95].

➥ For our gateway example we specify a class Activation_Queue
as follows:

class Activation_Queue {
public:

// Block for an “infinite” amount of time
// waiting for <enqueue> and <dequeue> methods
// to complete.
const int INFINITE = -1;

// Define a “trait”.
typedef Activation_Queue_Iterator iterator;

// Constructor creates the queue with the
// specificied high water mark that determines
// its capacity.
Activation_Queue (size_t high_water_mark);

// Insert <method_request> into the queue, waiting up
// to <msec_timeout> amount of time for space
// to become available in the queue.
void enqueue (Method_Request *method_request,

long msec_timeout = INFINITE);

09.02.1999 Active-Object.pub.doc

Active Object 13

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

// Remove <method_request> from the queue, waiting up
// to <msec_timeout> amount of time for a
// <method_request> to appear in the queue.
void dequeue (Method_Request *method_request,

long msec_timeout = INFINITE);

private:
// Synchronization mechanisms, e.g.,
// condition variables and mutexes, and
// the queue implementation, e.g., an array
// or a linked list, go here.
// ...

};

The enqueue() and dequeue() methods provide a ‘bounded-buffer
producer/consumer’ concurrency model that allows multiple threads
to simultaneously insert and remove Method_Request s without cor-
rupting the internal state of an Activation_Queue . One or more
client threads play the role of producers and enqueue
Method_Request s via a proxy. The scheduler thread plays the role of
a consumer, dequeueing Method_Request s when their guard s eval-
uate to ‘true’ and invoking their call() hooks to execute Servant
methods.

The Activation_Queue is also designed using concurrency control
patterns like Monitor (113) and synchronization mechanisms, such
as condition variables and mutexes [Ste97]. Therefore, the scheduler
thread will block for up to msec_timeout amount of time when trying
to remove Method_Request s from an empty Activation_Queue .
Likewise, client threads will block for up to msec_timeout amount of
time when they try to insert into a full Activation_Queue , that is, a
queue whose current Method_Request count equals its high water
mark. If an enqueue() method times out, control returns to the client
thread and the method request is not executed. ❏

4 Implement the scheduler. A scheduler maintains the activation queue
and executes pending method requests whose synchronization
constraints are met. The public interface of a scheduler typically
provides one method for the proxy to enqueue method requests into
the activation queue and another method that dispatches method
requests on the servant. These methods run in separate threads, that
is, the proxy runs in a different thread than the scheduler and
servant, which run in the same thread.

14

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

09.02.1999 Active-Object.pub.doc

➥ In our gateway example, we define an MQ_Scheduler class, as
follows:

class MQ_Scheduler {
public:

// Initialize the Activation_Queue to have
// the specified capacity and make the Scheduler
// run in its own thread of control.
MQ_Scheduler (size_t high_water_mark);

// ... Other constructors/destructors, etc.,

// Insert a method request into the
// Activation_Queue. This method
// runs in the thread of its client, i.e.
// in the proxy’s thread.
void enqueue (Method_Request *method_request) {

act_queue_->enqueue (method_request);
}

// Dispatch the method requests
// on their servant in the scheduler’s
// thread of control.
virtual void dispatch (void);

protected:
// Queue of pending Method_Requests.
Activation_Queue *act_queue_;

// Entry point into the new thread.
static void * svc_run (void *arg);

}; ❏

As we have said, a scheduler executes its dispatch() method in a
different thread of control than its client threads. These client threads
make the proxy enqueue method requests in the scheduler’s activa-
tion queue. The scheduler monitors the activation queue in its own
thread, selecting a method request whose guard evaluates to ‘true’,
that is, whose synchronization constraints are met. This method re-
quest is then executed by invoking its call() hook method.

➥ For instance, in our Gateway example, the constructor of
MQ_Scheduler initializes the Activation_Queue and spawns a new
thread of control to run the MQ_Scheduler ’s dispatch() method, as
follows:

MQ_Scheduler (size_t high_water_mark)
act_queue_ (new Activation_Queue

(high_water_mark)) {
// Spawn a separate thread to dispatch

09.02.1999 Active-Object.pub.doc

Active Object 15

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

// method requests.
Thread_Manager::instance ()->spawn (svc_run, this);

}

This new thread executes the svc_run() static method, which is
simply an adapter that calls the MQ_Scheduler::dispatch()
method, as follows:

void * MQ_Scheduler::svc_run (void *args) {
MQ_Scheduler *this_obj =

reinterpret_cast< MQ_Scheduler *> (args);

this_obj-> dispatch ();
}

The dispatch() method determines the order that Put and Get
method requests are processed based on the underlying MQ_Servant
predicates empty_i() and full_i() . These predicates reflect the
state of the servant, such as whether the message queue is empty,
full, or neither. By evaluating these predicate constraints via the
method request guard() methods, the scheduler can ensure fair
access to the MQ_Servant , as follows:

virtual void MQ_Scheduler :: dispatch (void) {
// Iterate continuously in a separate thread.
for (;;) {

Activation_Queue ::iterator i;
// The iterator’s <begin> method blocks
// when the <Activation_Queue> is empty.
for (i = act_queue_->begin ();

i != act_queue_->end ();
i++) {
// Select a method request <mr>
// whose guard evaluates to true.
Method_Request *mr = *i;
if (mr->guard ()) {

// Remove <mr> from the queue
act_queue_->dequeue (mr);
mr->call ();
delete mr;

}
// ... Other scheduling activities can go
// here, e.g., to handle the case where no
// Method_Requests in the Activation_Queue
// have guard() methods that evaluate
// to true.

}
}

} ❏

16

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

09.02.1999 Active-Object.pub.doc

In our example, the MQ_Scheduler::dispatch() implementation
continuously executes the next Method_Request whose guard()
evaluates to true. Scheduler implementations can be more sophisti-
cated, however, and may contain variables that represent the syn-
chronization state of the servant.

For example, to implement a multiple-readers/single-writer synchro-
nization policy a prospective writer will call ‘write’ on the proxy,
passing the data to write. Likewise, readers will call ‘read’ and obtain
a future as return value. The scheduler maintains several counter
variables that keep track of the number of read and write requests. In
addition, it maintains knowledge about the identity of the prospective
writers. The scheduler can use these counts to determine when a sin-
gle writer can proceed, that is, when the current number of readers is
0 and no write request from a different writer is currently pending ex-
ecution. When such a write request arrives, the scheduler may choose
to dispatch this writer to enhance fairness. In contrast, when read re-
quests arrive and the servant can satisfy these read requests, that is,
it is not empty, the scheduler can block all writing activity and dis-
patch read requests first.

The counter variable values described are independent of the ser-
vant's state since they are only used by the scheduler to enforce the
correct synchronization policy on behalf of the servant. The servant
focuses solely on its task to temporarily house client-specific applica-
tion data, whereas the scheduler focuses on coordinating multiple
readers and writers. Thus, modularity and reusability is enhanced.

5 Determine rendezvous and return value policies. The rendezvous poli-
cy determines how clients obtain return values from methods invoked
on Active Objects. A rendezvous policy is required since Active Object
servants do not execute in the same thread as clients that invoke
their methods. Implementations of the Active Object pattern typically
choose from the following rendezvous and return value policies:

• Synchronous waiting. Block the client thread synchronously in the
proxy until the method request is dispatched by the scheduler and
the result is computed and stored in the future.

• Synchronous timed wait. Block only for a bounded amount of time
and fail if the scheduler does not dispatch the method request
within that time period. If the timeout is zero the client thread

09.02.1999 Active-Object.pub.doc

Active Object 17

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

‘polls,’ that is, it returns to the caller without queueing the method
request if the scheduler cannot dispatch it immediately.

• Asynchronous. Queue the method call and return control to the cli-
ent immediately. If the method is a two-way that produces a result
then some form of future must be used to provide synchronized ac-
cess to the value—or to the error status if the method call fails.

The future construct allows two-way asynchronous invocations that
return a value to the client. When a servant completes the method ex-
ecution, it acquires a write lock on the future and updates the future
with its result. Any client threads that are currently blocked waiting
for the result are awakened and can access the result concurrently.
A future can be garbage collected after the writer and all readers no
longer reference the future. In languages like C++, which do not sup-
port garbage collection natively, futures can be reclaimed when they
are no longer in use via idioms like Counted Pointer [POSA1].

➥ In our gateway example, the get() method invoked on the
MQ_Proxy ultimately results in the Get::call() method being dis-
patched by the MQ_Scheduler , as shown in implementation step 2,
page 95. Since the MQ_Proxy::get() method returns a value, a
Message_Future is returned to the client that calls it. The
Message_Future is defined as follows:

class Message_Future {
public:

// Copy constructor binds <this> and <f> to the same
// <Message_Future_Rep>, which is created if
// necessary.
Message_Future (const Message_Future &f);

// Constructor that initializes <Message_Future> to
// point to <Message> <m> immediately.
Message_Future (const Message &m);

// Assignment operator that binds <this> and <f>
// to the same <Message_Future_Rep>, which is
// created if necessary.
void operator= (const Message_Future &f);

// ... other constructors/destructors, etc.,

// Type conversion, which blocks waiting to obtain
// the result of the asynchronous method invocation.
operator Message ();

18

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

09.02.1999 Active-Object.pub.doc

private:
// Message_Future_Rep uses the “Counted Pointer”
// idiom.
Message_Future_Rep *future_rep_;

};

The Message_Future is implemented using the Counted Pointer
idiom [POSA1]. This idiom simplifies memory management for
dynamically allocated C++ objects by using a reference counted
Message_Future_Rep body that is accessed solely through the
Message_Future handle. ❏

In general, a client can obtain the result value from a future either by
immediate evaluation or by deferred evaluation.

➥ For example, a consumer handler in our gateway example
running in a separate thread may choose to block until new messages
arrive from suppliers, as follows:

MQ_Proxy message_queue;
// ...

// Conversion of Message_Future from the
// get() method into a message causes the
// thread to block until a message is
// available.
Message msg = message_queue.get ();

// Transmit message to the consumer.
send (msg);

Conversely, if messages are not available immediately, a consumer
handler can store the Message_Future return value from
message_queue and perform other ‘bookkeeping’ tasks, such as ex-
changing keep-alive messages to ensure its consumer is still active.
When the consumer handler is done with these tasks it can block un-
til a message arrives from suppliers, as follows:

// Obtain a future (does not block the client).
Message_Future future = message_queue.get ();

// Do something else here...

// Evaluate future in the conversion operator;
// may block if the result is not available yet.
Message msg = Message (future);
send (msg); ❏

09.02.1999 Active-Object.pub.doc

Active Object 19

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Example
Resolved

Internally, the Gateway software contains supplier and consumer
handlers that act as local proxies [POSA1] for remote suppliers and
consumers, respectively.

Supplier handlers receive messages from remote suppliers, inspect
address fields in the messages, and use the address as a key into a
routing table that identifies which remote consumer should receive
the message. The routing table maintains a map of consumer
handlers, each of which is responsible for delivering messages to its
remote consumer over a separate TCP connection.

To handle flow control over various TCP connections, each consumer
handler contains a message queue implemented using the Active
Object pattern, as described in the Implementation section. The
Consumer_Handler class is defined as follows:

class Consumer_Handler {
public:

Consumer_Handler (void);
// Put the message into the queue.
void put (const Message &msg) {

message_queue_. put (msg);
}

Local Area Network 2

Gateway

Local Area Network 1

Supplier A Consumer B
More
Suppliers
and
Consumers

More
Suppliers
and
Consumers

: Supplier
Handler A

: Consumer
Handler B

: Message
Queue

: Routing
Table

1: recv(msg)

2: find_route(msg)

3: put(msg)

4: put(msg)

5: get(msg)
6: send(msg)

20

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

09.02.1999 Active-Object.pub.doc

private:
// Proxy to the Active Object.
MQ_Proxy message_queue_;

// Connection to the remote consumer.
SOCK_Stream connection_;

// Entry point into the new thread.
static void * svc_run (void *arg);

};

Supplier_Handlers running in their own threads put messages into
the appropriate Consumer_Handler 's message queue, as follows:

Supplier_Handler::route_message (const Message &msg) {
// Locate the appropriate consumer based on the
// address information in the Message.
Consumer_Handler *ch =

routing_table_.find (msg.address ());

// Put the Message into the Consumer Handler's queue.
ch-> put (msg);

}

To process the messages inserted into its message queue, each
Consumer_Handler spawns a separate thread of control in its
constructor, as follows:

Consumer_Handler::Consumer_Handler (void) {
// Spawn a separate thread to get messages from the
// message queue and send them to the consumer.
Thread_Manager::instance ()->spawn (svc_run, this);
// ...

}

This new thread executes the svc_run() method entry point, which
gets the messages placed into the queue by supplier handler threads
and sends them to the consumer over the TCP connection, as follows:

void * Consumer_Handler::svc_run (void *args) {
Consumer_Handler *this_obj =

reinterpret_cast<Consumer_Handler *> (args);

for (;;) {
// Conversion of Message_Future from the
// get() method into a Message causes the
// thread to block until a message is
// available.
Message msg = this_obj->message_queue_. get ();

09.02.1999 Active-Object.pub.doc

Active Object 21

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

// Transmit message to the consumer over the
// TCP connection.
this_obj->connection_.send (msg);

}
}

Since the message queue is implemented as an Active Object the
send() operation can block in any given Consumer_Handler object
without affecting the quality of service of other Consumer_Handlers .

Variants Integrated Scheduler. To reduce the number of components needed to
implement the Active Object pattern, the roles of the proxy and
servant are often integrated into the scheduler component, though
servants still execute in a different thread than the proxies. Moreover,
the transformation of the method call on the proxy into a method
request can also be integrated into the scheduler. For instance, the
following is another way to implement the message queue example:

class MQ_Scheduler
public:

MQ_Scheduler (size_t size)
: servant_ (new MQ_Servant (size)),

act_queue_ (new Activation_Queue (size)) {}
// ... other constructors/destructors, etc.,

void put (const Message m) {
Method_Request *method_request =

new Put (servant_, m);
act_queue_->enqueue (method_request);

}
Message_Future get (void) {

Message_Future result;

Method_Request *method_request =
new Get (servant_, result);

act_queue_->enqueue (method_request);
return result;

}

// ...
protected:

MQ_Servant *servant_;
Activation_Queue *act_queue_;
// ...

};

By centralizing where method requests are generated, the Active
Object pattern implementation can be simplified since there are fewer
components. The drawback, of course, is that the scheduler must

22

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

09.02.1999 Active-Object.pub.doc

know the type of the servant and proxy, which makes it hard to reuse
a scheduler for different types of Active Objects.

Message passing. A further refinement of the integrated scheduler
variant is to remove the proxy and servant altogether and use direct
message passing between the client thread and the scheduler thread,
as follows:

class Scheduler
public:

Scheduler (size_t size)
: act_queue_ (new Activation_Queue (size)) {}

// ... other constructors/destructors, etc.,

void enqueue (Message_Request *message_request) {
act_queue_->enqueue (message_request);

}

virtual void dispatch (void) {
Message_Request *mr;

// Block waiting for next request to arrive.
while (act_queue_->dequeue (mr) {

// Process the message request <mr>...
}

}

// ...
protected:

Activation_Queue *act_queue_;
// ...

};

In this variant, there is no proxy, so clients themselves create an
appropriate type of Message_Request and call enqueue() , which
inserts the request into the Activation_Queue . Likewise, there is no
servant, so the dispatch() method running in the scheduler’s
thread simply dequeues the next Message_Request and processes
the request according to its type.

In general, it is easier to develop a message passing mechanism than
it is to develop an Active Object since there are fewer components to
develop. However, message passing is also typically more tedious and
error-prone since application developers are responsible for
programming the proxy and servant logic, rather than letting the
Active Object developers write this code.

09.02.1999 Active-Object.pub.doc

Active Object 23

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

Polymorphic Futures [LK95]. A polymorphic future allows parameter-
ization of the eventual result type represented by the future and
enforces the necessary synchronization. In particular, a polymorphic
future describes a typed future result value that provides write-once,
read-many synchronization. Whether a client blocks on a future de-
pends on whether or not a result value has been computed. Hence, a
polymorphic future is partly a reader-writer condition synchroniza-
tion pattern and partly a producer-consumer synchronization pat-
tern.

The following class illustrates a polymorphic future template for C++:

template <class T> class Future {
// This class implements a ‘single write, multiple
// read’ pattern that can be used to return results
// from asynchronous method invocations.

public:
// Constructor.
Future (void);

// Copy constructor that binds <this> and <r> to the
// same <Future> representation.
Future (const Future <T> &r);

// Destructor.
~Future (void);

// Assignment operator that binds <this> and <r> to
// the same <Future> representation.
void operator = (const Future <T> &r);

// Cancel a <Future>. Put the future into its initial
// state. Returns 0 on succes and -1 on failure.
int cancel (void);

// Type conversion, which obtains the result of the
// asynchronous method invocation. Will block
// forever forever until the result is obtained.
operator T ();

// Check if the result is available.
int ready (void);

private:
// ...

};

24

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

09.02.1999 Active-Object.pub.doc

A client can use a polymorphic future as follows:

// Obtain a future (does not block the client).
Future <Message > future = message_queue.get ();

// Do something else here...

// Evaluate future in the conversion operator;
// may block if the result is not available yet.
Message msg = Message (future);

Distributed Active Object. In this variant, a distribution boundary
exists between the proxy and the scheduler, rather than just a
threading boundary, as with the Active Object pattern described
earlier. Therefore, the solution is similar to the Broker pattern
[POSA1] where the client-side proxy plays the role of a stub, which is
responsible for marshaling the method parameters into a method
request format that can be transmitted across a network and
executed by a servant in a separate address space. In addition, this
variant typically introduces the notion of a server-side skeleton,
which performs demarshaling on the method request parameters
before they are passed to a servant method in the server.

Thread pool. A thread pool is a generalization of the Active Object
pattern that supports multiple servants per Active Object. These
servants can offer the same services to increase throughput and
responsiveness. Every servant runs in its own thread and indicates to
the scheduler when it is ready with its current job. The scheduler
then assigns a new method request to that servant as soon as one is
available.

Additional variants of Active Objects can be found in [Lea96], chapter
5: Concurrency Control and chapter 6: Services in Threads.

Known Uses Object Request Broker. The Active Object pattern has been used to
implement concurrent ORB middleware frameworks, such as CORBA
[OMG98b] and DCOM [Box97]. For instance, the TAO ORB [POSA4]
implements the Active Object pattern for its default concurrency
model. In this design, each client’s CORBA stub corresponds to an
Active Object pattern's proxy, which transforms remote operation in-
vocations into CORBA Request s. These requests are sent to the serv-
er process where they are inserted into socket queues. The TAO ORB
Core's Reactor is the scheduler and the socket queues in the operat-
ing system correspond to the activation queues. Developers create a

09.02.1999 Active-Object.pub.doc

Active Object 25

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

servant that executes the methods in the context of the server. Clients
can either make synchronous two-way invocations, which block the
calling thread until the operation returns, or they can make asyn-
chronous method invocations, which return a Poller future object
that can be evaluated at a later point [OMG98b].

ACE Framework [Sch97]. Reusable implementations of the method
request, activation queue, and future components in the Active Ob-
ject pattern are provided in the ACE framework. The corresponding
classes are called ACE_Method_Request , ACE_Activation_Queue ,
and ACE_Future . These components have been used to implement
many production distributed systems.

Siemens MedCom [JWS98]. The Active Object pattern is used in the
Siemens MedCom framework, which provides a blackbox component-
oriented framework for electronic medical systems. MedCom employs
the Active Object pattern in conjunction with the Command
Processor pattern [POSA1] to simplify client windowing applications
that access patient information on various medical servers.

Siemens FlexRouting - Automatic Call Distribution [Flex98]. This
call center management system uses the Thread Pool variant of the
Active Object pattern. Services which a call center offers are imple-
mented as applications of their own. For example, there may be a
hotline application, an ordering application, and a product informa-
tion application—dependent of the types of service offered. These
applications support agents3 in serving the various possible customer
requests. Each instance of these applications is a separate servant
component. A ‘FlexRouter’ component, which corresponds to the
scheduler, automatically dispatches incoming customer requests to
agent applications that are able to serve these requests.

Actors [Agha86]. The Active Object pattern has been used to
implement Actors. An Actor contains a set of instance variables and
behaviors that react to messages sent to an Actor by other Actors.
Messages sent to an Actor are queued in the Actor's message queue.
In the Actor model, messages are executed in order of arrival by the
‘current’ behavior. Each behavior nominates a replacement behavior
to execute the next message, possibly before the nominating behavior
has completed execution. Variations on the basic Actor model allow

3. In the context of this paragraph an agent is a human person.

26

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

09.02.1999 Active-Object.pub.doc

messages in the message queue to be executed based on criteria other
than arrival order [ToSi89]. When the Active Object pattern is used to
implement Actors, the scheduler corresponds to the Actor scheduling
mechanism, method requests correspond to the behaviors defined for
an Actor, and the servant is the set of instance variables that
collectively represent the state of an Actor [KML92]. The proxy is
simply a strongly-typed mechanism used to pass a message to an
Actor.

Consequences The Active Object pattern provides the following benefits:

Enhances application concurrency and simplifies synchronization com-
plexity. Concurrency is enhanced by allowing client threads and
asynchronous method executions to run simultaneously. Synchroni-
zation complexity is simplified by the scheduler, which evaluates syn-
chronization constraints to guarantee serialized access to servants,
depending on their state.

Transparent leveraging of available parallelism. If the hardware and
software platforms support multiple CPUs efficiently, this pattern can
allow multiple Active Objects to execute in parallel, subject to their
synchronization constraints.

Method execution order can differ from method invocation order. Meth-
ods invoked asynchronously are executed based on their synchroni-
zation constraints, which may differ from their invocation order.

However, the Active Object pattern has the following liabilities:

Performance overhead. Depending on how the scheduler is imple-
mented, for example in user-space versus kernel-space, context
switching, synchronization, and data movement overhead may occur
when scheduling and executing Active Object method invocations. In
general, the Active Object pattern is most applicable on relatively
coarse-grained objects. In contrast, if the objects are very fine-
grained, the performance overhead of Active Objects can be excessive,
compared with related concurrency patterns such as Monitors (113).

Complicated debugging. It may be difficult to debug programs con-
taining Active Objects due to the concurrency and non-determinism
of the scheduler. Moreover, many debuggers do not support concur-
rent applications adequately.

09.02.1999 Active-Object.pub.doc

Active Object 27

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

See Also The Monitor pattern (113) ensures that only one method at a time
executes within a Passive Object, regardless of the number of threads
that invoke this object’s methods concurrently. Monitors are
generally more efficient than Active Objects since they incur less
context switching and data movement overhead. However, it is harder
to add a distribution boundary between client and server threads
using the Monitor pattern.

The Reactor pattern (59) is responsible for demultiplexing and
dispatching of multiple event handlers that are triggered when it is
possible to initiate an operation without blocking. This pattern is
often used in lieu of the Active Object pattern in order to schedule
callback operations to passive objects. It can also be used in
conjunction with the Reactor pattern to form the Half-Sync/Half-
Async pattern (113).

The Half-Sync/Half-Async pattern (113) decouples synchronous I/O
from asynchronous I/O in a system to simplify concurrent program-
ming effort without degrading execution efficiency. This pattern
typically uses the Active Object pattern to implement the synchro-
nous task layer, the Reactor pattern (59) to implement the asynchro-
nous task layer, and a Producer/Consumer pattern [Lea96], such as
a variant of the Pipes and Filters architecture [POSA1] to implement
the queueing layer.

The Command Processor pattern [POSA1] separates issuing requests
from their execution. A command processor, which corresponds to
the Active Object pattern’s scheduler, maintains pending service re-
quests, which are implemented as Commands [GHJV95]. These are
executed on suppliers, which correspond to servants. The Command
Processor pattern does not focus on concurrency, however, since cli-
ents, the command processor and suppliers reside in the same thread
of control. There are no proxies that represent the servants to clients.
Clients create commands and pass them directly to the command
processor.

The Broker pattern [POSA1] has many of the same components as the
Active Object pattern. In particular, clients access brokers via proxies
and servers implement remote objects via servants. The primary
difference between the Broker pattern and the Active Object pattern
is that there is a distribution boundary between proxies and servants

28

© Douglas C. Schmidt 1998, 1999, all rights reserved, © Siemens AG 1998, 1999, all rights reserved

09.02.1999 Active-Object.pub.doc

in the Broker pattern versus a threading boundary between proxies
and servants in the Active Object pattern.

The Mutual Exclusion (Mutex) pattern [McK95] is a simple locking
pattern that can occur in slightly different forms, such as a spin lock
or a semaphore. Mutexes are often used by an Active Object
implementation to serialize access to its Activation Queue. The Mutex
pattern can have various semantics, such as recursive mutexes and
priority mutexes.

Credits The genesis for the Active Object pattern originated with Greg
Lavender. Ward Cunningham helped us with shaping the [PLoP95]
version of Active Object. Bob Laferriere provided useful hints for
improving the clarity of the pattern’s implementation section.

