
Modeling and Classifying

OOCP Languages and Constructs

Jean-Pierre BRIOT�

Dept. of Information Science
The University of Tokyo

Hongo, Bunkyo-ku, Tokyo 113, Japon

briot@is.s.u-tokyo.ac.jp

This is a set of slides used as a support for a talk.
Eventually will turn into a full paper.

Made available as info on current Actalk version.
May 1994.

�Also member of LITP, Institut Blaise Pascal, Universit�es Paris VI & VII - CNRS, 4 place Jussieu, 75252

Paris Cedex 05. Jean-Pierre.Briot@litp.ibp.fr.

1



CONTENTS 2

Contents

1 Object-Oriented Concurrent Programming 3

2 Motivations 5

3 Design 8

4 Previous Results 10

5 Recent Developments 11

6 Architecture Decomposition 14

7 De�nition, Structure and Use of an Active Object 16

8 Parameterization of Kernel Classes 17

9 Modular Decomposition and Parameterization 19

10 The Combination Issue 23

11 Example: Combining Synchronization Policies 24

12 Evaluation and Critique 29

13 Related and Further Work 30



1 OBJECT-ORIENTED CONCURRENT PROGRAMMING 3

1 Object-Oriented Concurrent Programming

Object-oriented concurrent programming (OOCP at short) is a promising
methodology to match novel challenges of distributed and open comput-
ing.

OOCP describes computation through a collection of small self-contained
modules (named objects) which compute and interact concurrently through
some uni�ed communication protocol (named message passing).

OOCP provides a good foundation for decomposing programs and running
them e�ciently onto multiprocessors.

Objects and Concurrency

OOCP achieves integration of Object-Oriented programming (OOP) with
concurrency.

It identi�es objects as the unit of activity and synchronization, and associates
synchronization between objects at the message passing level.

Resulting uni�cation of an object with an activity is named active object.

This uni�cation achieves integration of concepts of OOP and concurrency
and frees the programmer from having to explicitly take care of most of
synchronization discipline.

This also preserves modularity and simplicity of OOP while enforcing self-
containedness and autonomy of objects.



1 OBJECT-ORIENTED CONCURRENT PROGRAMMING 4

Advantages

Main advantages of OOCP may be stated as following:

� high-levelness

� implicit decomposition of concurrent activities

� transparent synchronization

� locality and self-containedness

� dynamicity and openness

� multi-granularity

Applications

Object-oriented concurrent programming is being applied to a growing num-
ber of �elds. Applications are specially growing strong in the follow-
ing �elds: distributed operating systems, (distributed) arti�cial intelli-
gence, distributed simulation, distributed data-bases, o�ce information
systems, real-time systems and (distributed) process control.

Signi�cant results may also be found in other �elds, e.g., natural language
processing, and computer music.

OOCP has also main impact on new multi-processor architectures, like the
J-Machine.



2 MOTIVATIONS 5

2 Motivations

Variety of OOCP Models and Languages

� Various OOCP models, languages, and constructs have been and are still
being introduced.

� Even a single language (e.g., ABCL, POOL, ConcurrentSmalltalk: : : )
may have successive variants.

� Various proposals represent various compromises regarding various ap-
plication domains and architectures targeted.

Di�culty to Relate and Combine Them

� It is not always easy to relate and compare these various proposals.

� Various syntax and implementation platforms often obscure their rela-
tions.

� It is not trivial to reuse these various models and moreover to experiment
with combining them.



2 MOTIVATIONS 6

Three Dimensional Variation Space

Variations are mainly along three axes:

� communication

what are possible message send types?: asynchronous, unidirectional,
synchronous, with implicit or explicit reply, eager reply (future), with
possibly many replies, with priorities, with extra information (sender,
arrival time: : : )?

� activity

how does an object specify its acceptance of messages?, is it implicit
(reactive objects) or explicit?, possibly computing several messages si-
multaneously (intra-object concurrency)?

� synchronization and coordination

does an object control acceptance and activation of messages?, in regard
of what ressources? (its state, current status of activations, requests: : : ),
and along which policy? (abstract states transition, guards: : : ).



2 MOTIVATIONS 7

Proposal for a Uni�ed Modeling Platform

We therefore propose a platform for modeling/simulating various OOCP
models, languages and constructs within a single uni�ed programming
environment.

It provides a framework to help classify, design, reuse, and combine various
OOCP strategies.

Motivations and Objectives

� pedagogy

to help analyze and classify various OOCP models.

� design

to help designing new OOCP strategies by derivation and combination
of existing formalisms and strategies.

� experiment

to provide an environment for active experiment with various OOCP
models.

Actalk

Actalk is a platform based on the Smalltalk-80 programming environment
designed with these goals in mind.

(Actalk name stands for active objects (and actors) in Smalltalk-80.)

Actalk is based on a kernel which describes the basic semantics of active
objects (that is reactive serialized objects communicating through asyn-
chronous unidirectional message passing).

This kernel may be extended (and has actually been extended) to simulate
various OOCP programming languages models and constructs.



3 DESIGN 8

3 Design

Goals

� uniformity and modularity: one unique formalism.

� minimality: aminimal kernel for the simplest model of OOCP (reactive
serialized active objects and asynchronous unidirectional message send).

� extensibility and expressivity: the kernel is extended (subclassed) in
order to model various OOCP models, languages, and constructs.

� simplicity: we intend to represent fundamental characteristics and con-
structs of various OOCP languages. We don't address syntax considera-
tions (Smalltalk-80 syntax model is used). We also usually don't address
optimization, provability and security considerations.

� integration: Actalk is integrated within the Smalltalk-80 programming
environment, allowing combination and reuse of standard Smalltalk-80
objects and programming environment tools.

By grouping various OOCP formalisms within a single uni�ed programming
environment, the Actalk platform eases analysis, comparison, reuse and
combination of these formalisms.



3 DESIGN 9

Representation Model

We need to �nd good tradeo�s between these various goals, that is mainly
between simplicity, expressivity, and practicality.

We chose Smalltalk-80 as the programming foundation and environment for
its following qualities:

simplicity, high-levelness, modularity, 
exibility, environment richness,
and large availability.

Smalltalk-80 is modular and 
exible enough to allow a very good integration
of Actalk within its environment.

Smalltalk-80 also provides all basic objects (structures, functionalities and
resources) needed to represent/implement:

� active objects: objects, classes, methods,

� their communication: messages, shared (message) queues,

� their activities: message computation (perform), processes,

� and their synchronization: shared (message) queues, semaphores.

Representation (Meta-)Level

Smalltalk-80 standard objects o�er a high-level representation for Actalk
active objects.

Because Actalk and OOCP are very close to (and well integrated within)
Smalltalk-80 and OOP, this representation is actually very close to some
re
ective meta-description, while remaining concise and e�cient.

Note that a fully re
ective version/extension of Actalk has also been devel-
oped by Sylvain Giroux, and named ReActalk.

We don't follow this approach for the current platform in order to keep op-
timal decomposition/concision and e�ciency. Su�cient 
exibility is of-
fered by the parameterization of the Actalk architecture, by it high-level
implementation, and by its integration with the underlying Smalltalk-80
system.



4 PREVIOUS RESULTS 10

4 Previous Results

Actually initial development of Actalk started in 1988.

� Pedagogy

Simulation of Actor computation model behavior replacement, and ABCL/1
three types of message passing [ECOOP'89]. Variations and many ex-
amples.

Simulations of POOL, CSP and OCCAM by a team of students at Uni-
versity of Nantes (advised by Jean B�ezivin and Olivier Roux).

� Environment

Focus quickly moved to the programming environment aspects.

User-interface framework for active objects (extension of standard Smalltalk-
80 MVC framework) [TOOLS-USA'91], including some speci�c interface
generator.

Generic scheduler of processes/activities [WOOC'93], plus scheduling vi-
sualization tools.

(Most of these environment tools were developed by Lo��c Lescaudron.)

� Developments

Various DAI platforms (�ne and large-grain) at Laforia, Paris.

Also: simulation of multiprocessor communications, concurrent software
engineering processes: : :

� Experiments

{ a re
ective extension of Actalk: ReActalk (Sylvain Giroux).

{ study of exception handling mechanisms for OOCP.

{ strategies for concurrent constraint resolution.

{ compilation of production rules into concurrently activated daemons.

� Parallelism

Distributed implementation of the Actalk kernel on top of GnuSmalltalk
for a Transputer-based multiprocessor. (Unfortunately no time to com-
plete it into some workable system.)



5 RECENT DEVELOPMENTS 11

5 Recent Developments

Recently (mid-February 94) we restarted working on Actalk with this shared
experience in mind.

Our goals were:

� to integrate and introduce many more extensions simulating various
OOCP languages and constructs,

� to further improve the Actalk architecture by increasing its modular-

ity and expressivity,

� to port Actalk onto the latest Smalltalk-80 version (4.1).

This has resulted in a large number of extensions and a �ner decomposition
of the platform parameterization.



5 RECENT DEVELOPMENTS 12

Current Extensions and Simulations

model or language message send activity constructs synchronization

default asynchronous &
unidirectional

reactive &
serialized

no no

Actors asynchronous &
unidirectional

reactive &
serialized

behavior
replacement

behavior
replacement

ABCL/1 3 types: now,
past, future &
2 modes: stan-
dard, express

reactive &
serialized

wait for, sender,
atomic (no ex-
press), non
resume

wait
for (with where
constraint)

POOL2 synchronous,
public routines

autonomous
body &
serialized

answer
(serve), unblock-
ing answer, post-
actions

answer

ConcurrentEi�el asynchronous,
future

body
(live routine) &
serialized

unblocking serve unblocking serve

Concurrent
Smalltalk-II

asynchronous,
synchronous,
future

reactive &
serialized

relinquish, post-
actions

relinquish

ACT++ asynchronous,
future

reactive &
serialized

abstract states
transition

abstract states

OCore asynchronous,
future
(q-structure)

reactive &
serialized

user-de�ned
events

user de-
�ned events and
meta-level

abstract states any any no abstract states
guards any serialized no guards
guards & syn-
chronization
counters

any concurrent no guards

generic
invocations

any concurrent no guards on
generic
invocations

mixed any concurrent no abstract states
and guards



5 RECENT DEVELOPMENTS 13

Examples

The environment also includes some relatively large set of small examples,
mostly:

� numerical: factorial, �bonacci, prime numbers,

� non numerical: quick sort, distributed symbol table, behavior simula-
tion,

� synchronization: bounded bu�er, semaphore, printer queue, dining philoso-
phers, readers & writers, with variations on concurrency, message order-
ing preservation, priority, fairness: : :

Several of these examples (e.g., bounded bu�er including several inheritance
anomaly examples) are derived in many di�erent language models and
synchronization policies in order to compare their relative pros and cons.



6 ARCHITECTURE DECOMPOSITION 14

6 Architecture Decomposition

Actalk is decomposed into:

� the kernel which de�nes the basic semantics of active objects,

� and its various extensions, speci�ed as class libraries representing and
simulating various OOCP models, languages, constructs, and examples.

Decomposition and Parameterization of the Kernel

We identi�ed three classes and a related set of methods.

Some of these methods are named parameter methods (or virtual methods)
as they are designed to be rede�ned in subclasses in order to represent
various OOCP models.

We look for a good balance between modularity as well as concision of the
kernel.



6 ARCHITECTURE DECOMPOSITION 15

Kernel Classes

Actalk kernel is decomposed in three kernel classes:

� ActiveObject: the behavior of the active object, that is the one which
ultimately computes the messages.

This class represents user programs as well as the program constructs
de�ned by a speci�c OOCP language.

� Activity: the internal activity of the active object.

This class provides the autonomy (process) to the active object. It also
de�nes the way messages are selected, scheduled and handled. This
includes possible synchronization policies on activation of messages.

� Address: the address (mailbox) of an active object, that is the identi�er
of an active object where messages will be sent.

This class de�nes the way messages will be interpreted, that is possible
types of communication.

This decomposition in three classes allowes:

� to decouple the semantics of transmission of messages with the semantics
of their computation.

� to decouple user programs with the model of activity.

� to separate one program (active object behavior) with the speci�cation
of its inner synchronization (activity).

� one may associate several activities to a same address, thus simulating
immediately the Actor model of computation.



7 DEFINITION, STRUCTURE AND USE OF AN ACTIVE OBJECT 16

7 De�nition, Structure and Use of an Active Object

De�nition and Use

� The programmer de�nes the behavior of an active object as a subclass
of kernel class ActiveObject or one of its subclasses.

� An instance of this class represents the behavior of an active object.

� In order to actually create and activate the active object, one need to
send the message active to the behavior.

� This implicitly creates and initializes the two other components, that is
the activity and the address, of the active object.

� The new address is returned as the value of the method active.

Structure

The active object may be viewed with three successive layers:

� the address, which is the external reference to the active object,

� the internal activity which controls selection, acceptance and activation
of requests,

� the inner behavior which ultimately computes the request.

Way it Works

The basic way an active object (standard type as de�ned by the kernel) works
is as following:

� the address receives the message and enqueues it onto its private mailbox
(mail queue),

� independently (eventually), the activity picks up the message and accepts
it, that is delegates its computation to the behavior,

� the behavior performs the message.



8 PARAMETERIZATION OF KERNEL CLASSES 17

8 Parameterization of Kernel Classes

The following three tables summarize for each kernel class its parameter
methods and examples of rede�nitions.

Class ActiveObject Parameter Methods

method selector parameter default value examples of rede�nitions

privateInitialize initialization nothing none (yet!)
active start the

activity
create activity and
address, start
activity

(SimulatedBodyObject) send
an initialization message to
start the body

activityClass activity class Activity (PoolObject) PoolActivity
addressClass address class Address (PoolObject) PoolAddress

Class Activity Parameter Methods

method selector parameter default value examples of rede�nitions

privateInitialize initialization nothing (CountersActivity) initialize
synchronisation counters

start start the ac-
tivity
(process)

start
the process created
by createProcess

(Abcl3Activity) start a sec-
ond activity process speci�c to
express messages

createProcess create the ac-
tivity process

create a process
computing body

(Basic2Activity) create a
handle to the process (useful
for termination control)

body speci�cation
of the activity

serially accept suc-
cessive messages

(SingleMessageActivity) ac-
cept a single message (e.g., Ac-
tors behavior activity)

nextMessage next message
to be accepted

return and remove
�rst message from
message queue

(EnabledSelectorsActivity)
return and remove �rst mes-
sage whose selector is enabled

acceptMessage: accept
and compute
a message

performMessage: (ConcurrentActivity) start a
subprocess to compute the
message

performMessage: perform a
message

delegates ac-
tual perform to the
behavior

(ImplicitReplyActivity) re-
turn the value to the implicit
reply destination

addressClass address class Address (ImplicitReplyActivity)
ImplicitReplyAddress

invocationClass

For:

invocation
class

Message (WithSenderActivity)
WithSenderInvocation

(includes the sender)



8 PARAMETERIZATION OF KERNEL CLASSES 18

Class Address Parameter Methods

method selector parameter default value examples of rede�nitions

privateInitialize initialization nothing (InvocationAddress) initial-
ize arrival time stamp counter

receiveMessage: receive a
message

asynchronousSend:

inMessageQueue:

(GenericSendAddress) dis-
patch along the message send
type and mode

asynchronousSend:

inMessageQueue:

receive an
asynchronous
send message

enqueue message to
message queue

(SynchroConcurrentAddress)
atomically trigger the message
reception event



9 MODULAR DECOMPOSITION AND PARAMETERIZATION 19

9 Modular Decomposition and Parameterization

In order to possibly increase the expressivity of the platform without increas-
ing complexity (number of parameter methods) and decreasing e�ciency at
the top of the hierarchy, we introduce further decomposition and parameter-
ization when and where needed, that is within the hierarchy.

Kernel Levels

The kernel is functionally decomposed along three levels according to func-
tionalities o�ered:

1. essential characteristics: the parameter methods and other basic meth-
ods,

2. extended functionalities, including control of the activity (e.g., termina-
tion) and generic event methods,

3. entry point for the user (kernel classes: ActiveObject, Activity and
Address), with user-level facilities (tracing, checking, cleaning: : : ).

Generic Event Methods

Level 2 introduces generic event methods associated to the three following
events:

� receive: the active object receives a message.

� accept: the active object accepts a message and starts computing it.

� complete: the active object completes computation of the message.

Each generic method takes current message as an argument.

These methods may be used by the user to attach actions to a given class
of active objects, e.g., to:

� trace activites,

� step computation,

� control scheduling of activities,: : :



9 MODULAR DECOMPOSITION AND PARAMETERIZATION 20

These generic methods are also useful for modeling extensions, e.g., comput-
ing post actions for the POOL2 language (class PoolActivity).

In order to avoid confusion and shadowing between user-level (e.g., trace)
and modeling-level (e.g., simulate post actions), we make a distinction
between user event methods and kernel event methods.

Class SynchroConcurrentActivity introduces a third level: synchroniza-
tion event methods which ensure atomicity of events.

Other examples of further decomposition within the hierarchy may be found
with the following classes: GenericSendAddress, SelectiveAcceptActivity,
ConcurrentActivity. They are described in the following tables sum-
marizing respective hierarchies of each kernel class.

Hierarchy of Active Object Classes

model active object class default activity/address class

kernel ActiveObject Activity
ABCL/1 wait for Abcl1Object Abcl1Address
sender, wait for with where
constraint

Abcl2Object Abcl2Activity

express
message control (atomic, non
resume)

Abcl3Object Abcl3Activity

Actors behavior replacement ActorObject SingleMessageActivity
explicit acceptance of a mes-
sage (answer, unblocking
answer)

ExplicitAcceptObject ExplicitAcceptActivity

POOL2 post actions, public
routines

PoolObject PoolActivity

ConcurrentSmalltalk-II
method suspension
(relinquish)

SuspendObject SuspendActivity

post actions ConcurrentSmalltalkObject ConcurrentSmalltalkActivity
reference to sender WithSenderObject WithSenderActivity



9 MODULAR DECOMPOSITION AND PARAMETERIZATION 21

Hierarchy of Activity Classes

model activity class default address class

kernel Activity Address
reference to sender WithSenderActivity WithSenderAddress
ABCL/1 express message
handling

Abcl3Activity Abcl3Address

accept a single message SingleMessageActivity
implicit reply handling ImplicitReplyActivity ImplicitReplyAddress
enabled sets of selectors EnabledSelectorsActivity
abstract states AbstractStatesActivity
explicit acceptance of
messages

ExplicitAcceptActivity

POOL2 post actions, public
routines

PoolActivity PoolAddress

selective acceptance of
messages

SelectiveAcceptActivity

guards GuardsActivity
concurrent
activations, management of
activity subprocesses

ConcurrentActivity

method suspension SuspendActivity
post actions ConcurrentSmalltalkActivity
synchronization events SynchroConcurrentActivity SynchroConcurrentAddress
guards with synchroniza-
tion counters

CountersActivity

generic notion of message
invocation

InvocationActivity InvocationAddress

PlainInvocationActivity
mixed models ASIActivity

ASCActivity



9 MODULAR DECOMPOSITION AND PARAMETERIZATION 22

Hierarchy of Address Classes

model address class

kernel Address
Actors behavior replacement message handling (for external
computation of behavior replacement)

ExternalReplaceActorAddress

generic dispatch of message send type and mode GenericSendAddress
ABCL/1 past, now and future message send types Abcl1Address
reference to sender Abcl2Address
express message send mode Abcl3Address
ABCL/f single assignment future AbclfAddress
implicit reply handling ImplicitReplyAddress
POOL2 synchronous message passing PoolAddress
synchronization of concurrent activities: atomic triggering
of message receive event

SynchroConcurrentAddress

generic invocations: increment the arrival time stamp
counter

InvocationAddress

reference to sender WithSenderAddress

Generic Management of Messages

Class MailBox (subclass of standard class SharedQueue) groups various ac-
cessing and �ltering methods to access messages in a message queue (e.g.,
to look for some matching condition, or for a speci�c message pattern).

Class Invocation (subclass of standard class Message) provides generic in-
vocations which may include or/and compute extra information (e.g.,
arrival time in order to ensure preservation message ordering, record
number times skipped in order to ensure no starvation: : : ).



10 THE COMBINATION ISSUE 23

10 The Combination Issue

Parameter methods activityClass and addressClass de�ne default classes of
activity and address.

One may rede�ne them for a given class, or/and also specify them when
creating a speci�c active object.

Thus, one may combine between various active object, activity and address
classes, to create various hybrid models.

Example: an active object conforming to Actor model of computation (classes
ActorObject and SingleMessageActivity) and with the ABCL/1 three
types of message passing (class Abcl1Address).

This example is valid, but some others would not work if there are some
disjoint assumptions about their respective related classes. E.g., the
activity class Abcl3Activity assumes that the address class de�nes an
express message mailbox (as de�ned by class Abcl3Address).

Actalk provides a simple way to specify compatibility constraints between
component classes and to check these compatibilities.

The designer or user may de�ne the following methods: activeObjectConstraint,
activityConstraint and addressConstraint to specify compatibility
constraints for each component class.



11 EXAMPLE: COMBINING SYNCHRONIZATION POLICIES 24

11 Example: Combining Synchronization Policies

Abstract States

ImplicitReplyActivity subclass: #EnabledSelectorsActivity

instanceVariableNames: 'enabledSelectors '

classVariableNames: ''

poolDictionaries: ''

category: 'Actalk-Ext-SelectActivity'

nextMessage

^self mailBox firstMessageWithCondition: [:message |

enabledSelectors includes: message selector]

EnabledSelectorsActivity subclass: #AbstractStatesActivity

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Actalk-Synchro-AbsStates'

"Compute the initial set of enabled selectors."

privateInitialize

super privateInitialize.

enabledSelectors := self perform: self initialAbstractState

"State transition: compute next set of enabled selectors."

kernelEventComplete: aMessage

super kernelEventComplete: aMessage.

enabledSelectors := self perform:

(self nextAbstractStateAfter: aMessage selector)



11 EXAMPLE: COMBINING SYNCHRONIZATION POLICIES 25

Guards and Synchronization Counters

SynchroConcurrentActivity subclass: #CountersActivity

instanceVariableNames: 'receivedDictionary acceptedDictionary completedDictionary '

classVariableNames: ''

poolDictionaries: ''

category: 'Actalk-Synchro-Counters'

privateInitialize

super privateInitialize.

self makeSynchroCounterDictionariesOnSelectors: oself class allScriptSelectors

"Checking acceptance of a message."

isSynchroAcceptableMessage: aMessage

^self satisfyGuardSelector: aMessage selector arguments: aMessage arguments

satisfyGuardSelector: selector arguments: argumentsArray

^self perform: (self findGuardSelector: selector) withArguments: argumentsArray

"Representation of guards: methods prefixed by symbol guardOF."

findGuardSelector: selector

^('guardOF' , selector) asSymbol

"Associate synchronization counters update to events."

synchroEventAccept: aMessage

super synchroEventAccept: aMessage.

self incrAccepted: aMessage selector

synchroEventComplete: aMessage

super synchroEventComplete: aMessage.

self incrCompleted: aMessage selector

synchroEventReceive: aMessage

super synchroEventReceive: aMessage.

self incrReceived: aMessage selector



11 EXAMPLE: COMBINING SYNCHRONIZATION POLICIES 26

"Creation of the synchronization counters."

makeSynchroCounterDictionariesOnSelectors: selectors

receivedDictionary := IdentityDictionary new.

acceptedDictionary := IdentityDictionary new.

completedDictionary := IdentityDictionary new.

selectors do: [:selector |

receivedDictionary at: selector put: 0.

acceptedDictionary at: selector put: 0.

completedDictionary at: selector put: 0]

"Status of invocations."

accepted: selector

^acceptedDictionary at: selector

completed: selector

^completedDictionary at: selector

current: selector

^(self accepted: selector) - (self completed: selector)

pending: selector

^(self received: selector) - (self accepted: selector)

received: selector

^receivedDictionary at: selector

"Updating the synchronization counters."

incrAccepted: selector

acceptedDictionary at: selector

put: (acceptedDictionary at: selector) + 1

incrCompleted: selector

completedDictionary at: selector

put: (completedDictionary at: selector) + 1

incrReceived: selector

receivedDictionary at: selector

put: (receivedDictionary at: selector) + 1



11 EXAMPLE: COMBINING SYNCHRONIZATION POLICIES 27

Mixed Model: Abstract States + Guards

The following mixed model [Thomas PARLE'92] uses:

� abstract states to specify state synchronization,

� and guards to specify activation synchronization conditions.

CountersActivity subclass: #ASCActivity

instanceVariableNames: 'enabledSelectors '

classVariableNames: ''

poolDictionaries: ''

category: 'Actalk-Synchro-ASC'

"These two methods are hand-coded combinations/mixins."

privateInitialize

super privateInitialize.

enabledSelectors := self perform: self initialAbstractState

synchroEventComplete: aMessage

super synchroEventComplete: aMessage.

enabledSelectors := self perform:

(self nextAbstractStateAfter: aMessage selector)

"This expresses the conjonction of acceptance conditions."

isSynchroAcceptableMessage: aMessage

^(enabledSelectors includes: aMessage selector)

and: [super isSynchroAcceptableMessage: aMessage]



11 EXAMPLE: COMBINING SYNCHRONIZATION POLICIES 28

Example: Bounded Bu�er

ASCActivity subclass: #ASCBoundedBufferActivity

instanceVariableNames: ''

classVariableNames: ''

poolDictionaries: ''

category: 'Actalk-Synchro-ASC-Examples'

"Abstract states."

empty

^#(put:)

full

^#(get)

partial

^(self empty) + (self full)

initialAbstractState

^#empty

"Abstract states transition. (oself: the active object behavior itself)."

nextAbstractStateAfter: selector

^oself isEmpty

ifTrue:

[#empty]

ifFalse:

[oself isFull

ifTrue: [#full]

ifFalse: [#partial]]

"Guards: one get and one put: may proceed concurrently."

guardOFget

^(self current: #get) = 0

guardOFput: item

^(self current: #put:) = 0



12 EVALUATION AND CRITIQUE 29

12 Evaluation and Critique

Actalk eases analysis and comparison of existing OOCP systems.

Main objective/use remains pedagogical.

Meanwhile Actalk provides a framework which may help to design, reuse,
and combine existing ones into new ones. This means Actalk may be
used as a prototyping environment.

It cannot express any kind of OOCP model.

Meanwhile we believe that it achieves some constructive compromise between
expressivity, simplicity, and practicality concerns.

This is just an implementation of existing models after all!

Actalk helps reusing and combining models and policies because all their
simulations are organized along some common framework and architec-
ture.

This is just a matter of classifying and reorganizing a hierarchy of classes
when simulating/including new models.

Our experience shows that: the initial architecture framework (from 88)
remained mostly intact; current extensions model some relatively wide
area of OOCP systems; further decomposition and parameterization may
be added within the hierarchy without changing the kernel.

We cannot express any kind of language syntax without changing the stan-
dard Smalltalk-80 parser.

Our focus is on semantics and constructs, not syntax. When in need,
we choose (the naive and incomplete solution) to tag message selector
strings.

This not a formal way of modeling things.

Various simulations may be experimented actively thanks to the Smalltalk-
80 based programming environment.

Ultimate goal would be to o�er some kind of shared library of OOCP models,
constructs, and policies.



13 RELATED AND FURTHER WORK 30

13 Related and Further Work

Related Work

� ConcurrentSmalltalk [Yokote & Tokoro OOPSLA'86&87] [Okamura &
Tokoro TOOLS-Paci�c'90]

� Simtalk [B�ezivin OOPSLA'87]

� Coda [McA�er Re
ection-Workshop-OOPSLA'93]

� Generic Actalk Scheduler [Lescaudron PhD'92] [Briot & Lescaudron Concurrency-
Workshop-ECOOP'92] [Briot WOOC'93]

� Prototalk [Dony et al. OOPSLA'92]

Future Work

To get feedback on actual use by other teams for experiments, and appli-
cations, e.g., ongoing project on natural language based on a multi-
agent/blackboard architecture.

More investigation, extensions, examples.

To port and improve programming environment tools developed for previous
version.

Access

Documented version on:

anonymous ftp
camille.is.s.u-tokyo.ac.jp; cd /pub/actalk/

WWW/Mosaic
http://web.yl.is.s.u-tokyo.ac.jp/members/briot/actalk/actalk.html


