
ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 17 no 4 Oct 1992 Page 40

Foundations for the Study of Software Architecture

Dewayne E. Perry

AT&T Bell Laboratories

600 Mountain Avenue

Murray Hill, New Jersey 07974

dep@research.att.com

Alexander L. Wolf

Department of Computer Science

University of Colorado

Boulder, Colorado 80309

alw@cs.colorado.edu

c 1989,1991,1992 Dewayne E. Perry and Alexander L. Wolf

ABSTRACT

The purpose of this paper is to build the foundation
for software architecture. We �rst develop an intuition
for software architecture by appealing to several well-
established architectural disciplines. On the basis of
this intuition, we present a model of software architec-
ture that consists of three components: elements, form,
and rationale. Elements are either processing, data, or
connecting elements. Form is de�ned in terms of the
properties of, and the relationships among, the elements
| that is, the constraints on the elements. The ratio-
nale provides the underlying basis for the architecture in
terms of the system constraints, which most often derive
from the system requirements. We discuss the compo-
nents of the model in the context of both architectures
and architectural styles and present an extended exam-
ple to illustrate some important architecture and style
considerations. We conclude by presenting some of the
bene�ts of our approach to software architecture, sum-
marizing our contributions, and relating our approach
to other current work.

1 Introduction

Software design received a great deal of attention by

researchers in the 1970s. This research arose in response

to the unique problems of developing large-scale soft-

ware systems �rst recognized in the 1960s [5]. The

premise of the research was that design is an activity

separate from implementation, requiring special nota-

tions, techniques, and tools [3, 9, 17]. The results of

this software design research has now begun to make in-

roads into the marketplace as computer-aided software

engineering (CASE) tools [7].

In the 1980s, the focus of software engineering re-

search moved away from software design speci�cally and

more toward integrating designs and the design process

into the broader context of the software process and

its management. One result of this integration was that

many of the notations and techniques developed for soft-

ware design have been absorbed by implementation lan-

guages. Consider, for example, the concept of support-

ing \programmming-in-the-large". This integration has

tended to blur, if not confuse, the distinction between

design and implementation.

The 1980s also saw great advances in our ability to

describe and analyze software systems. We refer here to

such things as formal descriptive techniques and sophis-

ticated notions of typing that enable us to reason more

e�ectively about software systems. For example, we are

able to reason about \consistency" and \inconsistency"

more e�ectively and we are able to talk about \type

conformance"1 rather than just \type equivalence".

The 1990s, we believe, will be the decade of software

architecture. We use the term \architecture", in con-

trast to \design", to evoke notions of codi�cation, of

abstraction, of standards, of formal training (of soft-

ware architects), and of style. While there has been

some work in de�ning particular software architectures

(e.g., [19, 22]), and even some work in developing gen-

eral support for the process of developing architectures

(notably Sara [8]), it is time to reexamine the role of ar-

chitecture in the broader context of the software process

and software process management, as well as to marshal

the various new techniques that have been developed.

Some of the bene�ts we expect to gain from the emer-

gence of software architecture as a major discipline are:

1) architecture as the framework for satisfying require-

ments; 2) architecture as the technical basis for design

1Conformance is used to describe the relationship between

types and subtypes.



ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 17 no 4 Oct 1992 Page 41

and as the managerial basis for cost estimation and pro-

cess managment; 3) architecture as an e�ective basis for

reuse; and 4) architecture as the basis for dependency

and consistency analysis.

Thus, the primary object of our research is support

for the development and use of software architecture

speci�cations. This paper is intended to build the foun-

dation for future research in software architecture. We

begin in Section 2 by developing an intuition about

software architecture against the background of well-

established disciplines such as hardware, network, and

building architecture, establish the context of software

architecture, and provide the motivation for our ap-

proach. In Section 3, we propose a model for, and a

characterization of, software architecture and software

architectural styles. Next, in Section 4, we discuss an

easily understood example to elicit some important as-

pects of software architecture and to delineate require-

ments for a software-architecture notation. In Section 5,

we elaborate on two of the major bene�ts of our ap-

proach to software architecture. We conclude, in Sec-

tion 6, by summarizing the major points made in this

paper and considering related work.

2 Intuition, Context, and Motivation

Before presenting our model of software architecture,

we lay the philosophical foundations for it by: 1) devel-

oping an intuition about software architecture through

analogies to existing disciplines; 2) proposing a con-

text for software architecture in a multi-level product

paradigm; and 3) providing some motivation for soft-

ware architecture as a separate discipline.

2.1 Developing an Intuition about Soft-
ware Architecture

It is interesting to note that we do not have named

software architectures. We have some intuition that

there are di�erent kinds of software architectures, but

we have not formalized, or institutionalized, them. It is

our claim that it is because there are so many software

architectures, not because there are so few, that the

present state of a�airs exists. In this section we look at

several architectural disciplines in order to develop our

intuition about software architecture. We look at hard-

ware and network architecture because they have tra-

ditionally been considered sources of ideas for software

architecture; we look at building architecture because it

is the \classical" architectural discipline.

2.1.1 Computing Hardware Architecture

There are several di�erent approaches to hardware

architecture that are distinguished by the aspect of the

hardware that is emphasized. RISC machines are ex-

amples of a hardware architecture that emphasizes the

instruction set as the important feature. Pipelined ma-

chines and multi-processor machines are examples of

hardware architectures that emphasize the con�gura-

tion of architectural pieces of the hardware.

There are two interesting features of the second ap-

proach to hardware architecture that are important in

our consideration of software architecture:

� there are a relatively small number of design ele-

ments; and

� scale is achieved by replication of these design ele-

ments.

This contrasts with software architecture, where there is

an exceedingly large number of possible design elements.

Further, scale is achieved not by replicating design el-

ements, but by adding more distinct design elements.

However, there are some similarities: we often organize

and con�gure software architectures in ways analogous

to the hardware architectures mentioned above. For ex-

ample, we create multi-process software systems and use

pipelined processing.

Thus, the important insight from this discussion is

that there are fundamental and important di�erences

between the two kinds of architecture. Because of these

di�erences, it is somewhat ironic that we often present

software architecture in hardware-like terms.

2.1.2 Network Architecture

Network architectures are achieved by abstracting the

design elements of a network into nodes and connec-

tions, and by naming the kinds of relationships that

these two elements have to each other. Thus we get

star networks, ring networks, andmanhattan street net-

works as examples of named network architectures.

The two interesting architectural points about net-

work architecture are:

� there are two components | nodes and connec-

tions; and

� there are only a few topologies that are considered.

It is certainly the case that we can abstract to a similar

level in software architecture | for example, processes

and inteprocess communication. However, rather than

a few topologies to consider, there are an exceedingly



ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 17 no 4 Oct 1992 Page 42

large number of possible topologies and those topolo-

gies generally go without names. Moreover, we empha-

size aspects di�erent from the topology of the nodes and

connections. We consider instead such matters as the

placement of processes (e.g., distributed architectures)

or the kinds of interprocess communication (e.g., mes-

sage passing architectures).

Thus, we do not bene�t much from using networks

as an analogy for software architecture, even though we

can look at architectural elements from a similar level

of abstraction.

2.1.3 Building Architecture

The classical �eld of architecture provides some of

the more interesting insights for software architecture.

While the subject matter for the two is quite di�erent,

there are a number of interesting architectural points

in building architecture that are suggestive for software

architecture:

� multiple views;

� architectural styles;

� style and engineering; and

� style and materials.

A building architect works with the customer by

means of a number of di�erent views in which some

particular aspect of the building is emphasized. For

example, there are elevations and oor plans that give

the exterior views and \top-down" views, respectively.

The elevation views may be supplemented by contextual

drawings or even scale models to provide the customer

with the look of the building in its context. For the

builder, the architect provides the same oor plans plus

additional structural views that provide an immense

amount of detail about various explicit design consider-

ations such as electrical wiring, plumbing, heating, and

air-conditioning.

Analogously, the software architect needs a number of

di�erent views of the software architecture for the var-

ious uses and users. At present we make do with only

one view: the implementation. In a real sense, the im-

plementation is like a builders detailed view | that is,

like a building with no skin in which all the details are

visible. It is very di�cult to abstract the design and ar-

chitecture of the system from all the details. (Consider

the Pompidou Center in Paris as an example.)

The notion of architectural style is particularly use-

ful from both descriptive and prescriptive points of

view. Descriptively, architectural style de�nes a partic-

ular codi�cation of design elements and formal arrange-

ments. Prescriptively, style limits the kinds of design

elements and their formal arrangements. That is, an

architectural style constrains both the design elements

and the formal relationships among the design elements.

Analogously, we shall �nd this a most useful concept in

software architecture.

Of extreme importance is the relationship between

engineering principles and architectural style (and, of

course, architecture itself). For example, one does not

get the light, airy feel of the perpendicular style as ex-

empli�ed in the chapel at King's College, Cambridge,

from romanesque engineering. Di�erent engineering

principles are needed to move from the massiveness of

the romanesque to lightness of the perpendicular. It is

not just a matter of aesthetics. This relationship be-

tween engineering principles and software architecture

is also of fundamental importance.

Finally, the relationship between architectural style

and materials is of critical importance. The materi-

als have certain properties that are exploited in pro-

viding a particular style. One may combine structural

with aesthetic uses of materials, such as that found in

the post and beam construction of tudor-style houses.

However, one does not build a skyscraper with wooden

posts and beams. The material aspects of the design

elements provide both aesthetic and engineering bases

for an architecture. Again, this relationship is of critical

importance in software architecture.

Thus, we �nd in building architecture some funda-

mental insights about software architecture: multiple

views are needed to emphasize and to understand dif-

ferent aspects of the architecture; styles are a cogent

and important form of codi�cation that can be used

both descriptively and prescriptively; and, engineering

principles and material properties are of fundamental

importance in the development and support of a partic-

ular architecture and architectural style.

2.2 The Context of Architecture

Before discussing our motivation for software archi-

tecture speci�cations, we posit a characterization of ar-

chitecture in the context of the entire software product.

Note that we do not mean to imply anything about the

particular process by which this product is created |

though of course there may be implications about the

process that are inherent in our view. Our purpose is

primarily to provide a context for architecture in what

would be considered a fairly standard software product.

We characterize the di�erent parts of the software



ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 17 no 4 Oct 1992 Page 43

product by the kinds of things that are important for

that part | the kinds of entities, their properties and

relationships that are important at that level, and the

kinds of decision and evaluation criteria that are rele-

vant at that level:

� requirements are concerned with the determination

of the information, processing, and the character-

istics of that information and processing needed by

the user of the system;2

� architecture is concerned with the selection of archi-

tectural elements, their interactions, and the con-

straints on those elements and their interactions

necessary to provide a framework in which to sat-

isfy the requirements and serve as a basis for the

design;

� design is concerned with the modularization and

detailed interfaces of the design elements, their

algorithms and procedures, and the data types

needed to support the architecture and to satisfy

the requirements; and

� implementation is concerned with the representa-

tions of the algorithms and data types that satisfy

the design, architecture, and requirements.

The di�erent parts of a particular product are by no

means as simple as this characterization. There is a

continuum of possible choices of models, abstractions,

transformations, and representations. We simplify this

continuum into four discrete parts primarily to provide

an intuition about how architecture is related to the

requirements and design of a software system.

It should be noted that there are some development

paradigms to which our characterization will not apply

| for example, the exploratory programming paradigm

often found in AI research. However, our characteriza-

tion represents a wide variety of development and evo-

lutionary paradigms used in the creation of production

software, and delineates an important, and hitherto un-

derconsidered, part of a uni�ed software product [15].

2.3 Motivation for Architectural Speci-
�cations

There are a number of factors that contribute to the

high cost of software. Two factors that are important

2Note that the notion of requirements presented here is an ide-

alistic one. In practice, requirements are not so \pure"; they often

contain constraints on the architecture of a system, constraints on

the system design, and even constraints on the implementation.

to software architecture are evolution and customiza-

tion. Systems evolve and are adapted to new uses, just

as buildings change over time and are adapted to new

uses. One frequently accompanying property of evolu-

tion is an increasing brittleness of the system | that is,

an increasing resistance to change, or at least to chang-

ing gracefully [5]. This is due in part to two architec-

tural problems: architectural erosion and architectural

drift. Architectural erosion is due to violations of the ar-

chitecture. These violations often lead to an increase in

problems in the system and contribute to the increasing

brittleness of a system | for example, removing load-

bearing walls often leads to disastrous results. Architec-

tural drift is due to insensitivity about the architecture.

This insensitivity leads more to inadaptability than to

disasters and results in a lack of coherence and clarity

of form, which in turn makes it much easier to violate

the architecture that has now become more obscured.

Customization is an important factor in software ar-

chitecture, not because of problems that it causes, but

because of the lack of architectural maturity that it in-

dicates. In building software systems, we are still at

the stage of recreating every design element for each

new architecture. We have not yet arrived at the stage

where we have a standard set of architectural styles

with their accompanying design elements and formal

arrangements. Each system is, in essence, a new ar-

chitecture, a new architectural style. The presense of

ubiquitous customization indicates that there is a gen-

eral need for codi�cation | that is, there is a need for

architectural templates for various architectural styles.

For the standard parts of a system in a particular style,

the architect can select from a set of well-known and

understood elements and use them in ways appropriate

to the desired architecture. This use of standard tem-

plates for architectural elements then frees the architect

to concentrate on those elements where customization

is crucial.

Given our characterization of architecture and moti-

vating problems, there are a number of things that we

want to be able to do with an architectural speci�cation:

� Prescribe the architectural constraints to the desired

level | that is, indicate the desired restrictiveness

or permissiveness, determine the desired level of

generality or particularity, de�ne what is necessity

and what is luxury, and pin-point the degree of rel-

ativeness and absoluteness. We want a means of

supporting a \principle of least constraint" to be

able to to express only those constraints in the ar-

chitecture that are necessary at the architectural

level of the system description. This is an impor-



ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 17 no 4 Oct 1992 Page 44

tant departure from current practice that, instead

of specifying the constraints, supplies speci�c solu-

tions that embody those desired constraints.

� Separate aesthetics from engineering | that is, in-

dicate what is \load-bearing" from what is \dec-

oration". This separation enables us to avoid the

kinds of changes that result in architectural erosion.

� Express di�erent aspects of the architecture in an

appropriate manner | that is, describe di�erent

parts of the architecture in an appropriate view.

� Perform dependency and consistency analysis |

that is, determine the interdependencies between

architecture, requirements and design; determine

interdependencies between various parts of the ar-

chitecture; and determine the consistency, or lack

of it, between architectural styles, between styles

and architecture, and between architectural ele-

ments.

3 Model of Software Architecture

In Section 2 we use the �eld of building architecture

to provide a number of insights into what software ar-

chitecture might be. The concept of building architec-

ture that we appeal to is that of the standard de�nition:

\The art or science of building: especially designing and

building habital structures" [11]. Perhaps more relevant

to our needs here is a secondary de�nition: \A unifying

or coherent form or structure" [11]. It is this sense of

architecture | providing a unifying or coherent form

or structure | that infuses our model of software archi-

tecture.

We �rst present our model of software architecture,

introduce the notion of software architectural style, and

discuss the interdependence of processing, data, and

connector views.

3.1 The Model

By analogy to building architecture, we propose the

following model of software architecture:

Software Architecture =
f Elements, Form, Rationale g

That is, a software architecture is a set of architectural

(or, if you will, design) elements that have a particular

form.

We distinguish three di�erent classes of architectural

elements:

� processing elements;

� data elements; and

� connecting elements.

The processing elements are those components that sup-

ply the transformation on the data elements; the data

elements are those that contain the information that is

used and transformed; the connecting elements (which

at times may be either processing or data elements,

or both) are the glue that holds the di�erent pieces

of the architecture together. For example, procedure

calls, shared data, and messages are di�erent examples

of connecting elements that serve to \glue" architectural

elements together.

Consider the example of water polo as a metaphor for

the di�erent classes of elements: the swimmers are the

processing elements, the ball is the data element, and

water is the primary connecting element (the \glue").

Consider further the similarities of water polo, polo, and

soccer. They all have a similar \architecture" but dif-

fer in the \glue" | that is, they have similar elements,

shapes and forms, but di�er mainly in the context in

which they are played and in the way that the elements

are connected together. We shall see below that these

connecting elements play a fundamental part in distin-

guishing one architecture from another and may have

an important e�ect on the characteristics of a particu-

lar architecture or architectural style.

The architectural form consists of weighted proper-

ties and relationships. The weighting indicates one of

two things: either the importance of the property or the

relationship, or the necessity of selecting among alterna-

tives, some of which may be preferred over others. The

use of weighting to indicate importance enables the ar-

chitect to distinguish between \load-bearing" and \dec-

orative" formal aspects; the use of weighting to indicate

alternatives enables the architect to constrain the choice

while giving a degree of latitude to the designers who

must satisfy and implement the architecture.

Properties are used to constrain the choice of archi-

tectural elements | that is, the properties are used to

de�ne constraints on the elements to the degree desired

by the architect. Properties de�ne the minimum de-

sired constraints unless otherwise stated | that is, the

default on constraints de�ned by properties is: \what

is not constrained by the architect may take any form

desired by the designer or implementer".

Relationships are used to constrain the \placement"

of architectural elements | that is, they constrain how

the di�erent elements may interact and how they are

organized with respect to each other in the architecture.



ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 17 no 4 Oct 1992 Page 45

As with properties, relationships de�ne the minimum

desired constraints unless otherwise stated.

An underlying, but integral, part of an architecture is

the rationale for the various choices made in de�ning an

architecture. The rationale captures the motivation for

the choice of architectural style, the choice of elements,

and the form. In building architecture, the rationale

explicates the underlying philosophical aesthetics that

motivate the architect. In software architecture, the

rationale instead explicates the satisfaction of the sys-

tem constraints. These constraints are determined by

considerations ranging from basic functional aspects to

various non-functional aspects such as economics [4],

performance [2] and reliability [13].

3.2 Architectural Style

If architecture is a formal arrangement of architec-

tural elements, then architectural style is that which

abstracts elements and formal aspects from various spe-

ci�c architectures. An architectural style is less con-

strained and less complete than a speci�c architecture.

For example, we might talk about a distributed style or

a multi-process style. In these cases, we concentrate on

only certain aspects of a speci�c architecture: relation-

ships between processing elements and hardware pro-

cessors, and constraints on the elements, respectively.

Given this de�nition of architecture and architectural

style, there is no hard dividing line between where ar-

chitectural style leaves o� and architecture begins. We

have a continuum in which one person's architecture

may be another's architectural style. Whether it is an

architecture or a style depends in some sense on the

use. For example, we propose in Section 2.3 that archi-

tectural styles be used as constraints on an architecture.

Given that we want the architectural speci�cation to be

constrained only to the level desired by the architect,

it could easily happen that one person's architecture

might well be less constrained than another's architec-

tural style.

The important thing about an architectural style

is that it encapsulates important decisions about the

architectural elements and emphasizes important con-

straints on the elements and their relationships. The

useful thing about style is that we can use it both to

constrain the architecture and to coordinate cooperat-

ing architects. Moreover, style embodies those decisions

that su�er erosion and drift. An emphasis on style as

a constraint on the architecture provides a visibility to

certain aspects of the architecture so that violations of

those aspects and insensitivity to them will be more

obvious.

3.3 Process/Data/Connector
Interdependence

As mentioned above, an important insight from build-

ing architecture is that of multiple views. Three im-

portant views in software architecture are those of pro-

cessing, data, and connections. We observe that if a

process view3 of an architecture is provided, the result-

ing emphasis is on the data ow though the processing

elements and on some aspects of the connections be-

tween the processing elements with respect to the data

elements. Conversely, if a data view of an architecture

is provided, the resulting emphasis is on the process-

ing ow, but with less an emphasis on the connecting

elements than we have in the process view. While the

current common wisdom seems to put the emphasis on

object-oriented (that is, data-oriented) approaches, we

believe that all three views are necessary and useful at

the architectural level.

We argue informally, in the following way, that there

is a process and data interdependence:

� there are some properties that distinguish one state

of the data from another; and

� those properties are the result of some transforma-

tion produced by some processing element.

These two views are thus intertwined | each dependent

on the other for at least some of the important charac-

teristics of both data and processing. (For a more gen-

eral discussion of process and data interdependence, see

[10].)

The interdependence of processing and data upon the

connections is more obvious: the connecting elements

are the mechanisms for moving data around from pro-

cessor to processor. Because of this activity upon the

data, the connecting elements will necessarily have some

of the properties required by the data elements in pre-

cisely the same way that processing elements have some

of the properties required by the data elements.

At the architectural level, we need all three views

and the ability to move freely and easily among them.

Our example in the next section provides illustrations

of this interdependence and how we might provide three

di�erent, but overlapping, views.

3We use the dichotomy of process and data instead of function

and object because these terms seem to be more neutral. The

latter terms seem to suggest something more speci�c in terms of

programming than the former.



ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 17 no 4 Oct 1992 Page 46

4 Examples

One of the few software architectural styles that has

achieved widespread acceptance is that of the multi-

phase compiler. It is practically the only style in

which every software engineer is expected to have been

trained. We rely on this familiarity to illustrate some

of the insights that we have gained into software archi-

tectures and their descriptions.

In this section we look at two compiler architectures

of the multi-phase style:

� a compiler that is organized sequentially; and

� a compiler that is organized as a set of parallel pro-

cesses connected by means of a shared internal rep-

resentation.

Because of space limitations and for presentation pur-

poses, our examples are somewhat simpli�ed and ideal-

ized, with many details ignored. Moreover, we use exist-

ing notations because they are convenient for illustrative

purposes; proposals for speci�c architectural notations

are beyond the scope of this paper. In each case we focus

on the architectural considerations that seem to be the

most interesting to derive from that particular example.

(Of course, other examples of multi-phase compiler ar-

chitectures exist and we make no claims of exhaustive

coverage of this architectural landscape.) Before explor-

ing these examples, we provide a brief review of their

common architectural style.

4.1 The Multi-phase Architectural
Style

Our simpli�ed model of a compiler distinguishes �ve

phases: lexical analysis, syntactic analysis, semantic

analysis, optimization, and code generation. Lexical

analysis acts on characters in a source text to produce

tokens for syntactic analysis. Syntactic analysis pro-

duces phrases that are either de�nition phrases or use

phrases. Semantic analysis correlates use phrases with

de�nition phrases | i.e., each use of a program element

such as an identi�er is associated with the de�nition for

that element, resulting in correlated phrases. Optimiza-

tion produces annotations on correlated phrases that

are hints used during generation of object code. The

optimization phase is considered a preferred, but not

necessary, aspect of this style. Thus, the multi-phase

style recognizes the following architectural elements:

processing elements: lexer, parser, semantor, op-

timizer, and code generator;

and

data elements: characters, tokens, phrases,

correlated phrases, annotated

phrases, and object code.

Notice that we have not speci�ed connecting elements.

It is simply the case that this style does not dictate

what connecting elements are to be used. Of course, the

choice of connecting elements has a profound impact on

the resulting architecture, as shown below.

The form of the architectural style is expressed by

weighted properties and relationships among the archi-

tectural elements. For example, the optimizer and an-

notated phrases must be found together, but they are

both only preferred elements, not necessary. As an-

other example, there are linear relationships between

the characters constituting the text of the program, the

tokens produced by the lexer, and the phrases produced

by the parser. In particular, tokens consist of a sequence

of characters, and phrases consist of a sequence of to-

kens. However, there exists a non-linear relationship

between phrases and correlated phrases. These relation-

ships are depicted in Figure 1. As a �nal example, each

of the processing elements has a set of properties that

de�nes the constraints on those elements. The lexer, for

instance, takes as input the characters that represent

the program text and produces as output a sequence of

tokens. Moreover, there is an ordering correspondence

between the tokens and the characters that must be

preserved by the lexer. A good architectural descrip-

tion would capture these and other such properties and

relationships.

Let us illustrate this by formally describing the rela-

tionship between characters and tokens and describing

the order-preserving property of the lexer. We begin

the description with a data view stated in terms of se-

quences and disjoint subsequences.

Let C = fc1; c2; . . . ; cmg be a sequence of char-

acters representing a source text, Ci
j i � j be a

subsequence of C whose elements are all the el-

ements in C between ci and cj inclusive, T =

ft1; t2; . . . ; tng be a sequence of tokens, and \�="

indicate the correspondence between a token in T

and a subsequence of C. T is said to preserve C

if there exists an i, j, k, q, r, and s such that

1 � i < j � m, 1 < k < n, 1 < q � r < m, and

for all t 2 T there exists a Cx
y such that:

t �=

8>>>>><
>>>>>:

C1
i if t = t1

Cj
m if t = tn

Cq
r if t = tk, where 9 u, v

�������

1 � u � q � 1
r + 1 � v �m

tk�1 �= Cu
q�1

tk+1 �= Cr+1
v



ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 17 no 4 Oct 1992 Page 47

Correlated Phrases

Phrases

Tokens

Characters

Figure 1: Data Element Relationships.

The lexer is now constrained from a processing perspec-

tive to accept a sequence of characters C, produce a

sequence of tokens T , and to preserve the ordering cor-

respondence between characters and tokens:

lexer: C ! T , where T preserves C

Finally, it is interesting to note that the connec-

tor view reveals additional constraints that should be

placed on the architectural style. These constraints are

illustrated by the connection between the lexer and the

parser. In particular, connecting elements must ensure

that the tokens produced by the lexer are preserved for

the parser, such that the order remains intact and that

there are no losses, duplicates, or spurious additions.

4.2 Sequential Architecture

If there is a \classical" multi-phase compiler archi-

tecture, then it is the sequential one, in which each

phase performs its function to completion before the

next phase begins and in which data elements are passed

directly from one processing element to the other. Thus,

we add the following architectural elements to those

characterizing the overall style:

connecting elements: procedure call and parame-

ters.

Furthermore, we re�ne tokens to include the structur-

ing of the identi�er tokens into a name table (NT), and

re�ne phrases to be organized into an abstract syntax

tree (AST). Correlation of phrases results in an abstract

syntax graph (ASG) and optimization in an annotated

abstract syntax graph (AASG). Figure 2 gives a process-

ing view of the sequential architecture, showing the ow

of data through the system. Notice that there are two

paths from the semantor to the code generator, only one

of which passes through the optimizer. This reects the

fact that a separate optimization phase is not necessary

in this architecture. That is, a design satisfying this

architecture need not provide an optimizer.

To illustrate the interdependence of processing and

data views, let us consider the data as a whole being

(NT+ASG)
Correlated Phrases

Lexer

Parser

Semantor

Characters

Tokens
(NT)

Phrases
(NT+AST)

Correlated Phrases
(NT+ASG)

Optimizer

Code
Generator

Annotated Cor. Phrases
(NT+AASG)

Object Code

Figure 2: Processing View of Se-

quential Compiler Ar-

chitecture.

created and transformed as they ow through the sys-

tem. We have found that the data view is best captured

by a notion that we call application-oriented properties.

Application-oriented properties describe the states of a

data structure that are of signi�cance to the process-

ing elements manipulating that structure. They can be

used for such things as controlling the order of process-

ing, helping to de�ne the e�ects of a processing element

on a data structure, and even helping to de�ne the op-

erations needed by the processing elements to achieve

those e�ects.

For this example, the (simpli�ed) application-

oriented properties are as follows:

has-all-tokens: a state produced as a result of lex-

ically analyzing the program text,

necessary for the parser to begin

processing;



ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 17 no 4 Oct 1992 Page 48

has-all-phrases: a state produced by the parser,

necessary for the semantor to be-

gin processing;

has-all-correlated-phrases: a state produced by the

semantor, necessary for the opti-

mizer and code generator to begin

processing; and

has-all-optimization-annotations: a state produced

by the optimizer, preferred for the

code generator to begin process-

ing.

Notice again that the last property is only preferred.

While in this example the application-oriented proper-

ties may appear obvious and almost trivial, in the next

example they are crucial to the description of the archi-

tecture and in guaranteeing the compliance of designs

and implementations with that architecture.

An interesting question to consider is why we evi-

dently chose to use a property-based scheme for de-

scribing architectural elements rather than a type-based

scheme. The reason is that type models, as they cur-

rently exist, are essentially only able to characterize el-

ements and element types in terms of the relationship

of one element type to another (e.g., subtyping and in-

heritance [12]), in terms of the relationships that par-

ticular elements have with other elements (e.g., as in

Oros [18]), and in terms of the operations that can

be performed on the elements. They are not suited to

descriptions of characteristics of elements such as the

application-oriented properties mentioned above. For

example, simply knowing that there is an operation as-

sociated with abstract syntax graphs to connect one

phrase to another does not lead to an understanding

that the abstract syntax graph must have all phrases

correlated before the code generator can access the

graph.

Property-based schemes, on the other hand, can be

used to capture easily all these characteristics; one prop-

erty of an element could be the set of operations with

which it is associated. It seems reasonable to consider

enhancing type models in this regard and we see this

as a potentially interesting area of future work. We

note, however, that type-based schemes are already ap-

propriately used at the design level, as mentioned in

Section 2. Further, we note that application-oriented

properties provide a good vehicle with which to drive

the design, or justify the suitability, of a set of opera-

tions for an element type.

Returning to the interdependence between the pro-

cessing and data views, we can see that the data

annota.
optimiz.-

all-
has-

phrases
correlated-

all-
has-

phrases
all-
has-

tokens-
all-
has-

Code
Generator Generator

Code

Optimizer

Semantor

Parser

Lexer

Figure 3: Data View of Sequential

Compiler Architecture.

view concentrates on the particular application-oriented

properties that are of importance in describing each

data structure, while the processing view concentrates

on the functional properties of each processing element.

These views are actually complementary. In fact, if we

depict the data view, as is done in Figure 3, and com-

pare it to the processing view, shown in Figure 2, then

the correspondence becomes fairly obvious.

The important architectural considerations that de-

rive from this example can be summarized as follows:

� the form descriptions must include the relation-

ships and constraints among the elements, includ-

ing relative weightings and preferences;

� current type-based schemes for characterizing ele-

ments are insu�cient; and

� there is a natural interdependence between the pro-

cessing and data views that can provide comple-

mentary descriptions of an architecture.

4.3 Parallel Process, Shared Data
Structure Architecture

Suppose that performance is of paramount impor-

tance, such that one wants to optimize the speed of

the compiler as much as possible. One possible solution

is to adopt an architecture that treats the processing

elements as independent processes driven by a shared

internal representation | that is, the connecting ele-

ment is the shared representation and each processing

element performs eager evaluation. Figure 4 depicts a



ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 17 no 4 Oct 1992 Page 49

Representation
Internal

Lexer

Parser

Semantor

Tokens Tokens

Correlated Phrases

Phrases

Phrases

Characters

Figure 4: Partial Process View of

Parallel Process, Shared

Data Structure Com-

piler Architecture.

simpli�ed and partial process view of this architecture,

showing the relationships between the internal repre-

sentation and the lexer, the parser, and the semantor.

(We only consider these three processing elements in the

remainder of this example.)

The application-oriented properties of the shared in-

ternal representation in this architecture are much more

complicated, and interesting, than those given in the

previous example. In particular, a number of process-

ing elements are a�ecting the state of the internal repre-

sentation, and doing so concurrently. This implies that

the application-oriented properties must provide for co-

ordination and synchronization among the processing

elements. We begin by giving the basic properties that

the internal representation may exhibit:

no-tokens
has-token
will-be-no-more-tokens
no-phrases
has-phrase
will-be-no-more-phrases
no-correlated-phrases
have-correlated-phrases
all-phrases-correlated

Notice that these properties imply that tokens and

phrases are consumed, but that correlated phrases

are accumulated (consider \has-phrase" versus \have-

correlated-phrases").

Because of the parallel behavior of the processing el-

ements, the interrelationships among the various ba-

sic properties must be explicitly described. A num-

ber of notations exist that are suitable for making

such descriptions, including parallel path expressions

[6], constrained expressions [1], and petri nets [16]. In

this example we use parallel path expressions, where

a comma indicates sequence, a plus sign indicates one

or more repetitions, an asterisk indicates zero or more

repetitions, and subexpressions are enclosed in paren-

theses. Synchronization points occur where names of

application-oriented properties are the same in di�er-

ent parallel path expressions. First, the path expres-

sions for each of the data elements | tokens, phrases,

and correlated phrases | are given:

(1) (no-tokens, has-token+)*,
will-be-no-more-tokens, has-token*, no-tokens

(2) (no-phrases, has-phrase+)*,
will-be-no-more-phrases, has-phrase*, no-phrases

(3) no-correlated-phrases, (have-correlated-phrases)*,
all-phrases-correlated

Next, the path expressions relating the application-

oriented properties are given:

(4) will-be-no-more-tokens, will-be-no-more-phrases,
all-phrases-correlated

(5) has-token+, has-phrase
(6) has-phrase+ , has-correlated-phrase

Thus, tokens are consumed to produce phrases, and

phrases are correlated until they are all processed.

What we have given so far is essentially a connector

view (and, in this case, e�ectively a data view as well).

Concentrating instead on the processing view allows us

to describe how each processing element transforms the

internal representation as well as how those processing

elements are synchronized:

lexer: (no-tokens, has-token+)*,

will-be-no-more-tokens

parser: no-phrases, (has-token+, has-phrase)*,

will-be-no-more-tokens, (has-token+,

has-phrase)*, no-tokens,

will-be-no-more-phrases

semantor: no-correlated-phrases, (has-phrase+,

has-correlated-phrase)*,

will-be-no-more-phrases, (has-phrase+,

has-correlated-phrase)*, no-phrases,

all-phrases-correlated

An interesting question to ask is how this architec-

ture relates to the previous one. In fact, the ability to



ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 17 no 4 Oct 1992 Page 50

relate similar architectures is an important aspect of the

software process; an example is the evaluation of \com-

peting" architectures. Certainly, the architectures both

being of a common style captures some portion of the

relationship. More can be said, however, given the use

of application-oriented properties. In particular, we can

draw correlations among the properties of the di�erent

architectures. The table below shows some of these cor-

relations.

Sequential Architecture Parallel Architecture

has-all-tokens will-be-no-more-tokens
has-all-phrases will-be-no-more-pharses

has-all-correlated-phrases all-phrases-correlated

In this case, the correlations indicate common points

of processing, leading, for instance, to a better under-

standing of the possible reusability of the processing

elements.

The important points of this example can be summa-

rized as follows:

� the processing elements are much the same as in

the previous architecture, but with di�erent \locus

of control" properties;

� the form of this architecture is more complex

than that of the previous one | there are more

application-oriented properties and those proper-

ties require a richer notation to express them and

their interrelationships;

� we still bene�t from the processing/data/connector

view interdependence, albeit with more complexity;

and

� application-oriented properties are useful in relat-

ing similar architectures.

5 Some Bene�ts Derived from Software
Architecture

We have previously mentioned the use of software ar-

chitecture in the context of requirements and design.

Software architecture provides the framework within

which to satisfy the system requirements and provides

both the technical and managerial basis for the design

and implementation of the system. There are two fur-

ther bene�ts that we wish to discuss in detail: the kinds

of analysis that software architecture speci�cations will

enable us to perform and the kinds of reuse that we gain

from our approach to software architecture.

5.1 Software Architecture and Analysis

Aside from providing clear and precise documenta-

tion, the primary purpose of speci�cations is to provide

automated analysis of the documents and to expose var-

ious kinds of problems that would otherwise go unde-

tected. There are two primary categories of analysis

that we wish to perform: consistency and dependency

analysis. Consistency occurs in several dimensions: con-

sistency within the architecture and architectural styles,

consistency of the architecture with the requirements,

and consistency of the design with the architecture. In

the same way that Inscape [14] formally and automat-

ically manages the interdependencies between interface

speci�cations and implementations, we also want to be

able to manage the interdependencies between require-

ments, architecture, and design.

Therefore, we want to provide and support at least

the following kinds of analysis:

� consistency of architectural style constraints;

� satisfaction of architectural styles by an architec-

ture;

� consistency of architectural constraints;

� satisfaction of the architecture by the design;

� establishment of dependencies between architec-

ture and design, and architecture and require-

ments; and

� determination of the implications of changes in ar-

chitecture or architectural style on design and re-

quirements, and vice versa.

5.2 Architecture and the Problems of
Use and Reuse

An important aspect in improving the productivity

of the designers and the programmers is that of being

able to build on the e�orts of others | that is, using

and reusing components whether they come as part of

another system or as parts from standard components

catalogs.

There has been much attention given to the problem

of �nding components to reuse. Finding components

may be important in reducing the duplication of e�ort

and code within a system, but it is not the primary

issue in attaining e�ective use of standardized compo-

nents. For example, �nding the components in a math

library is not an issue. The primary issue is under-

standing the concepts embodied in the library. If they



ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 17 no 4 Oct 1992 Page 51

are understood, then there is usually no problem �nd-

ing the appropriate component in the library to use. If

they are not understood, then browsing will help only

in conjunction with the acquisition of the appropriate

concepts.

The primary focus in architecture is the identi�cation

of important properties and relationships | constraints

on the kinds of components that are necessary for the

architecture, design, and implementation of a system.

Given this as the basis for use and reuse, the architect,

designer, or implementer may be able to select the ap-

propriate architectural element, design element, or im-

plemented code to satisfy the speci�ed constraints at

the appropriate level.

Moreover, the various parts of previously imple-

mented software may be teased apart to select that

which is useful from that which is not. For example,

the design of a component from another system may

have just the right architectural constraints to satisfy

a particular architectural element, but the implementa-

tion is constrained such that it conicts with other sys-

tem constraints. The solution is to use the design but

not the implementation. This becomes possible only by

indentifying the architectural, design, and implemen-

tation constraints and use them to satisfy the desired

goals of the architecture, design, and implementation.

The important lesson in reusing components is that

the possibilities for reuse are the greatest where speci�-

cations for the components are constrained the least |

at the architectural level. Component reuse at the im-

plementation level is usually too late because the imple-

mentation elements often embody too many constraints.

Moreover, consideration of reuse at the architectural

level may lead development down a di�erent, equally

valid solution path, but one that results in greater reuse.

6 Conclusions

Our e�orts over the past few years have been directed

toward improving the software process associated with

large, complex software systems. We have come to be-

lieve that software architecture can play a vital role in

this process, but that it has been both underutilized and

underdeveloped. We have begun to address this sit-

uation by establishing an intuition about and context

for software architecture and architectural style. We

have formulated a model of software architecture that

emphasizes the architectural elements of data, process-

ing, and connection, highlights their relationships and

properties, and captures constraints on their realization

or satisfaction. Moreover, we have begun to delineate

the necessary features of architectural description tech-

niques and their supporting infrastructure. In so doing,

we have set a direction for future research that should

establish the primacy of software architecture.

Others have begun to look at software architecture.

Three that are most relevant are Schwanke, et al., Zach-

man, and Shaw.

Schwanke, et al., [20] de�ne architecture as the per-

mitted or allowed set of connections among components.

We agree that that aspect of architecture is important,

but feel that there is much more to architecture than

simply components and connections, as we demonstrate

in this paper.

Zachman [23] uses the metaphor of building architec-

ture to advantage in constructing an architecture for

information systems. He exploits the notion of di�er-

ent architectural documents to provide a vision of what

the various documents ought to be in the building of

an information system. The architect is the mediator

between the user and the builders of the system. The

various documents provide the various views of di�erent

parts of the product | the users view, the contractors

views, etc. His work di�ers from ours in that he is

proposing a speci�c architecture for a speci�c applica-

tion domain while we are attempting to de�ne the philo-

sophical underpinnings of the discipline, to determine a

notation for expressing the speci�cation of the various

architectural documents, and determine how these doc-

uments can be used in automated ways.

Shaw [21] comes the closest in approach to ours. She

takes the view of a programming language designer and

abstracts classes of components, methods of composi-

tion, and schemas from a wide variety of systems. These

correspond somewhat to our notions of processing and

data elements, connecting elements, and architectural

style, respectively. One major di�erence between our

work and Shaw's is that she is taking a traditional type-

based approach to describing architecture, while we

are taking a more expressive property-based approach.

Our approach appears better able to more directly cap-

ture notions of weighted properties and relationships.

Shaw's approach of abstracting the various properties

and relationships of existing architectures and embody-

ing them in a small set of component and composition

types appears rather restrictive. Indeed, she is seeking

to provide a �xed set of useful architectural elements

that one can mix and match to create an architecture.

Shaw's approach is clearly an important and useful one

and does much to promote the understanding of basic

and important architectural concepts. Our approach,

on the other hand, emphasizes the importance of the



ACM SIGSOFT SOFTWARE ENGINEERING NOTES vol 17 no 4 Oct 1992 Page 52

underlying properties and relationships as a more gen-

eral mechanism that can be used to describe the partic-

ular types of elements and compositions in such a way

that provides a latitude of choice.

In conclusion, we o�er the following conjecture: per-

haps the reason for such slow progress in the develop-

ment and evolution of software systems is that we have

trained carpenters and contractors, but no architects.

REFERENCES

[1] G.S. Avrunin, L.K. Dillon., J.C. Wileden, and

W.E. Riddle, Constrained Expressions: Adding Anal-
ysis Capabilities to Design Methods for Concurrent
Systems, IEEE Trans. on Software Engineering,

Vol. SE-12, No. 2, Feb. 1986, pp. 278{292.

[2] J.L. Bentley, Writing E�cient Programs, Addison-

Wesley, Reading, MA, 1982.

[3] G.D. Bergland, A Guided Tour of Program Design

Methodologies, IEEE Computer, Vol. 14, No. 10,
Oct. 1981, pp. 13{37.

[4] B.W. Boehm, Software Engineering Economics,

Prentice-Hall, Englewood Cli�s, NJ, 1981.

[5] F.P. Brooks, Jr., The Mythical Man-Month,

Addison-Wesley, Reading, MA, 1972.

[6] R.H. Campbell and A.N. Habermann, The Speci�ca-

tion of Process Synchronization by Path Expressions,
Lecture Notes in Computer Science, No. 16,
Apr. 1974, pp. 89{102.

[7] E.J. Chikofsky (ed.), Software Development |

Computer-aided Software Engineering, Technol-
ogy Series, IEEE Computer Society Press, 1988.

[8] G. Estrin, R.S. Fenchel, R.R. Razouk, and M.K. Ver-

non, SARA (System ARchitects Apprentice), IEEE

Trans. on Software Engineering, Vol. SE-12, No. 2,
Feb. 1986, pp. 293{277.

[9] P. Freeman and A.I. Wasserman, Tutorial on Soft-

ware Design Techniques, IEEE Computer Society
Press, 1976.

[10] D. Jackson, Composing Data and Process Descriptions

in the Design of Software Systems, LCS Tech. Re-

port 419,Massachusetts Institute of Technology, Cam-
bridge, MA, May 1988.

[11] F.C. Mish, Webster's Ninth New Collegiate Dic-

tionary, Merriam Webster, Spring�eld, MA, 1983.

[12] J.E.B. Moss and A.L. Wolf, Toward Principles of In-

heritance and Subtyping for Programming Languages,
COINS Tech. Report 88{95, COINS Dept., Univ.
of Mass., Amherst, MA, Nov. 1988.

[13] J.D. Musa, Software Reliability: Measurement,

Prediction, Application, McGraw-Hill, New York,
NY, 1990.

[14] D.E. Perry, The Inscape

Environment, Proc. Eleventh Inter. Conf. on Soft-
ware Engineering, Pittsburgh, PA, IEEE Computer
Society Press, May 1989, pp. 2{12.

[15] D.E. Perry, Industrial Strength Software Development

Environments, Proc. IFIP Congress '89, The 11th

World Computer Congress, San Francisco, CA,
Aug. 1989.

[16] J.L. Peterson, Petri Nets, ACM Computing Sur-

veys, Vol. 9, No. 3, Sept. 1977, pp. 223-252.

[17] W.E. Riddle and J.C. Wileden, Tutorial on Software

System Design: Description and Analysis, Com-
puter Society Press, 1980.

[18] W.R. Rosenblatt, J.C. Wileden, and A.L. Wolf, OROS:

Towards a Type Model for Software Development
Environments, Proc. OOPSLA '89, New Orleans,
Louisiana, October 1989.

[19] E. Sandewall, C. Str�omberg, and H. S�orensen, Software

Architecture Based on Communicating Residential En-
vironments, Proc. Fifth Inter. Conf. on Software

Engineering, San Diego, CA, IEEE Computer Society
Press, Mar. 1981, pp. 144{152.

[20] R.W. Schwanke, R.Z. Altucher, and M.A. Plato�, Dis-

covering, Visualizing and Controlling Software Struc-
ture, Proc. Fifth Inter. Workshop on Soft-

ware Speci�cation and Design, Pittsburgh, PA,
May 1989, appearing in ACM SIGSOFT Notes,

Vol. 14, No. 3, May 1989, pp. 147{150.

[21] M. Shaw, Larger Scale Systems Require Higher-

Level Abstractions, Proc. Fifth Inter. Workshop on
Software Speci�cation and Design, Pittsburgh, PA,
May 1989, appearing in ACM SIGSOFT Notes,

Vol. 14, No. 3, May 1989, pp. 143{146.

[22] A.Z. Spector, Modular Architectures for Distributed

and Database Systems, Proc. Eighth ACM

SIGACT-SIGMOD-SIGART Symp. on Princi-

ples of Database Systems, Philadelphia, PA, ACM
Press, Mar. 1989, pp. 217{224.

[23] J.A. Zachman, A Framework for Information Sys-

tems Architecture, IBM Systems Journal, Vol. 26,
No. 3, 1987.


